lightning/tests/plugins/test_sharded_plugin.py

319 lines
9.8 KiB
Python

import os
import platform
from unittest import mock
import pytest
import torch
from pytorch_lightning import Trainer
from pytorch_lightning.callbacks import Callback
from pytorch_lightning.plugins.sharded_native_amp_plugin import ShardedNativeAMPPlugin
from pytorch_lightning.plugins.sharded_plugin import DDPShardedPlugin, FAIRSCALE_AVAILABLE
from pytorch_lightning.utilities import NATIVE_AMP_AVALAIBLE
from tests.base.boring_model import BoringModel
@mock.patch.dict(
os.environ,
{
"CUDA_VISIBLE_DEVICES": "0,1",
"SLURM_NTASKS": "2",
"SLURM_JOB_NAME": "SOME_NAME",
"SLURM_NODEID": "0",
"LOCAL_RANK": "0",
"SLURM_LOCALID": "0",
},
)
@mock.patch("torch.cuda.device_count", return_value=2)
@pytest.mark.parametrize(
["ddp_backend", "gpus", "num_processes"],
[("ddp_cpu", None, None), ("ddp", 2, 0), ("ddp2", 2, 0), ("ddp_spawn", 2, 0)],
)
@pytest.mark.skipif(not FAIRSCALE_AVAILABLE, reason="Fairscale is not available")
def test_ddp_choice_sharded(tmpdir, ddp_backend, gpus, num_processes):
"""
Test to ensure that plugin is correctly chosen
"""
class CB(Callback):
def on_fit_start(self, trainer, pl_module):
assert isinstance(trainer.accelerator_backend.ddp_plugin, DDPShardedPlugin)
raise SystemExit()
model = BoringModel()
trainer = Trainer(
fast_dev_run=True,
gpus=gpus,
num_processes=num_processes,
distributed_backend=ddp_backend,
plugins=[DDPShardedPlugin()],
callbacks=[CB()],
)
with pytest.raises(SystemExit):
trainer.fit(model)
@mock.patch.dict(
os.environ,
{
"CUDA_VISIBLE_DEVICES": "0,1",
"SLURM_NTASKS": "2",
"SLURM_JOB_NAME": "SOME_NAME",
"SLURM_NODEID": "0",
"LOCAL_RANK": "0",
"SLURM_LOCALID": "0",
},
)
@mock.patch("torch.cuda.device_count", return_value=2)
@pytest.mark.parametrize(
["ddp_backend", "gpus", "num_processes"],
[("ddp_cpu", None, None), ("ddp", 2, 0), ("ddp2", 2, 0), ("ddp_spawn", 2, 0)],
)
@pytest.mark.skipif(not FAIRSCALE_AVAILABLE, reason="Fairscale is not available")
@pytest.mark.skipif(not NATIVE_AMP_AVALAIBLE, reason="Requires native AMP")
def test_ddp_choice_sharded_amp(tmpdir, ddp_backend, gpus, num_processes):
"""
Test to ensure that plugin native amp plugin is correctly chosen when using sharded
"""
class CB(Callback):
def on_fit_start(self, trainer, pl_module):
assert isinstance(trainer.accelerator_backend.ddp_plugin, DDPShardedPlugin)
assert isinstance(trainer.precision_connector.backend, ShardedNativeAMPPlugin)
raise SystemExit()
model = BoringModel()
trainer = Trainer(
fast_dev_run=True,
gpus=gpus,
precision=16,
num_processes=num_processes,
distributed_backend=ddp_backend,
plugins=[DDPShardedPlugin()],
callbacks=[CB()],
)
with pytest.raises(SystemExit):
trainer.fit(model)
@pytest.mark.skipif(platform.system() == "Windows",
reason="Distributed training is not supported on Windows")
@pytest.mark.skipif(not FAIRSCALE_AVAILABLE, reason="Fairscale is not available")
def test_ddp_sharded_plugin_checkpoint_cpu(tmpdir):
"""
Test to ensure that checkpoint is saved correctly
"""
model = BoringModel()
trainer = Trainer(
accelerator='ddp_cpu',
plugins=[DDPShardedPlugin()],
fast_dev_run=True,
)
trainer.fit(model)
checkpoint_path = os.path.join(tmpdir, 'model.pt')
trainer.save_checkpoint(checkpoint_path)
saved_model = BoringModel.load_from_checkpoint(checkpoint_path)
# Assert model parameters are identical after loading
for ddp_param, shard_param in zip(model.parameters(), saved_model.parameters()):
assert torch.equal(ddp_param, shard_param)
@pytest.mark.skipif(torch.cuda.device_count() < 2, reason="test requires multi-GPU machine")
@pytest.mark.skipif(platform.system() == "Windows",
reason="Distributed training is not supported on Windows")
@pytest.mark.skipif(not FAIRSCALE_AVAILABLE, reason="Fairscale is not available")
def test_ddp_sharded_plugin_checkpoint_multi_gpu(tmpdir):
"""
Test to ensure that checkpoint is saved correctly when using multiple GPUs
"""
model = BoringModel()
trainer = Trainer(
gpus=2,
accelerator='ddp_spawn',
plugins=[DDPShardedPlugin()],
fast_dev_run=True,
)
trainer.fit(model)
checkpoint_path = os.path.join(tmpdir, 'model.pt')
trainer.save_checkpoint(checkpoint_path)
saved_model = BoringModel.load_from_checkpoint(checkpoint_path)
# Assert model parameters are identical after loading
for ddp_param, shard_param in zip(model.parameters(), saved_model.parameters()):
assert torch.equal(ddp_param, shard_param)
@pytest.mark.skipif(torch.cuda.device_count() < 2, reason="test requires multi-GPU machine")
@pytest.mark.skipif(platform.system() == "Windows",
reason="Distributed training is not supported on Windows")
@pytest.mark.skipif(not FAIRSCALE_AVAILABLE, reason="Fairscale is not available")
def test_ddp_sharded_plugin_finetune(tmpdir):
"""
Test to ensure that we can save and restart training (simulate fine-tuning)
"""
model = BoringModel()
trainer = Trainer(
gpus=2,
accelerator='ddp_spawn',
plugins=[DDPShardedPlugin()],
fast_dev_run=True,
)
trainer.fit(model)
checkpoint_path = os.path.join(tmpdir, 'model.pt')
trainer.save_checkpoint(checkpoint_path)
saved_model = BoringModel.load_from_checkpoint(checkpoint_path)
trainer = Trainer(
fast_dev_run=True,
)
trainer.fit(saved_model)
return 1
@pytest.mark.skipif(platform.system() == "Windows",
reason="Distributed training is not supported on Windows")
@pytest.mark.skipif(not FAIRSCALE_AVAILABLE, reason="Fairscale is not available")
def test_ddp_sharded_plugin_resume_from_checkpoint(tmpdir):
"""
Test to ensure that resuming from checkpoint works
"""
model = BoringModel()
trainer = Trainer(
accelerator='ddp_cpu',
plugins=[DDPShardedPlugin()],
fast_dev_run=True,
)
trainer.fit(model)
checkpoint_path = os.path.join(tmpdir, 'model.pt')
trainer.save_checkpoint(checkpoint_path)
model = BoringModel()
trainer = Trainer(
accelerator='ddp_cpu',
plugins=[DDPShardedPlugin()],
fast_dev_run=True,
resume_from_checkpoint=checkpoint_path
)
trainer.fit(model)
return 1
@pytest.mark.skip(reason="Currently unsupported restarting training on different number of devices.")
@pytest.mark.skipif(torch.cuda.device_count() < 2, reason="test requires multi-GPU machine")
@pytest.mark.skipif(platform.system() == "Windows",
reason="Distributed training is not supported on Windows")
@pytest.mark.skipif(not FAIRSCALE_AVAILABLE, reason="Fairscale is not available")
def test_ddp_sharded_plugin_resume_from_checkpoint_downsize_gpus(tmpdir):
"""
Test to ensure that resuming from checkpoint works when downsizing number of GPUS
"""
model = BoringModel()
trainer = Trainer(
accelerator='ddp_spawn',
plugins=[DDPShardedPlugin()],
fast_dev_run=True,
gpus=2,
)
trainer.fit(model)
checkpoint_path = os.path.join(tmpdir, 'model.pt')
trainer.save_checkpoint(checkpoint_path)
model = BoringModel()
trainer = Trainer(
accelerator='ddp_spawn',
plugins=[DDPShardedPlugin()],
fast_dev_run=True,
gpus=1,
resume_from_checkpoint=checkpoint_path
)
trainer.fit(model)
return 1
@pytest.mark.skipif(not torch.cuda.is_available(), reason="requires GPU machine")
@pytest.mark.skipif(platform.system() == "Windows",
reason="Distributed training is not supported on Windows")
@pytest.mark.skipif(not FAIRSCALE_AVAILABLE, reason="Fairscale is not available")
def test_ddp_sharded_plugin_resume_from_checkpoint_gpu_to_cpu(tmpdir):
"""
Test to ensure that resuming from checkpoint works when going from GPUs- > CPU
"""
model = BoringModel()
trainer = Trainer(
accelerator='ddp_spawn',
plugins=[DDPShardedPlugin()],
gpus=1,
fast_dev_run=True
)
trainer.fit(model)
checkpoint_path = os.path.join(tmpdir, 'model.pt')
trainer.save_checkpoint(checkpoint_path)
model = BoringModel()
trainer = Trainer(
plugins=[DDPShardedPlugin()],
accelerator='ddp_cpu',
fast_dev_run=True,
resume_from_checkpoint=checkpoint_path
)
trainer.fit(model)
return 1
@pytest.mark.skipif(platform.system() == "Windows",
reason="Distributed training is not supported on Windows")
@pytest.mark.skipif(not FAIRSCALE_AVAILABLE, reason="Fairscale is not available")
def test_ddp_sharded_plugin_test(tmpdir):
"""
Test to ensure we can use test without fit
"""
model = BoringModel()
trainer = Trainer(
accelerator='ddp_cpu',
plugins=[DDPShardedPlugin()],
fast_dev_run=True,
)
trainer.test(model)
return 1
@pytest.mark.skipif(torch.cuda.device_count() < 2, reason="test requires multi-GPU machine")
@pytest.mark.skipif(platform.system() == "Windows",
reason="Distributed training is not supported on Windows")
@pytest.mark.skipif(not FAIRSCALE_AVAILABLE, reason="Fairscale is not available")
def test_ddp_sharded_plugin_test_multigpu(tmpdir):
"""
Test to ensure we can use test without fit
"""
model = BoringModel()
trainer = Trainer(
accelerator='ddp_spawn',
gpus=2,
plugins=[DDPShardedPlugin()],
fast_dev_run=True,
)
trainer.test(model)
return 1