109 lines
3.2 KiB
ReStructuredText
109 lines
3.2 KiB
ReStructuredText
:orphan:
|
|
|
|
.. _profiler_expert:
|
|
|
|
######################################
|
|
Find bottlenecks in your code (expert)
|
|
######################################
|
|
**Audience**: Users who want to build their own profilers.
|
|
|
|
----
|
|
|
|
***********************
|
|
Build your own profiler
|
|
***********************
|
|
To build your own profiler, subclass :class:`~lightning.pytorch.profilers.profiler.Profiler`
|
|
and override some of its methods. Here is a simple example that profiles the first occurrence and total calls of each action:
|
|
|
|
.. code-block:: python
|
|
|
|
from lightning.pytorch.profilers import Profiler
|
|
from collections import defaultdict
|
|
import time
|
|
|
|
|
|
class ActionCountProfiler(Profiler):
|
|
def __init__(self, dirpath=None, filename=None):
|
|
super().__init__(dirpath=dirpath, filename=filename)
|
|
self._action_count = defaultdict(int)
|
|
self._action_first_occurrence = {}
|
|
|
|
def start(self, action_name):
|
|
if action_name not in self._action_first_occurrence:
|
|
self._action_first_occurrence[action_name] = time.strftime("%m/%d/%Y, %H:%M:%S")
|
|
|
|
def stop(self, action_name):
|
|
self._action_count[action_name] += 1
|
|
|
|
def summary(self):
|
|
res = f"\nProfile Summary: \n"
|
|
max_len = max(len(x) for x in self._action_count)
|
|
|
|
for action_name in self._action_count:
|
|
# generate summary for actions called more than once
|
|
if self._action_count[action_name] > 1:
|
|
res += (
|
|
f"{action_name:<{max_len}s} \t "
|
|
+ "self._action_first_occurrence[action_name]} \t "
|
|
+ "{self._action_count[action_name]} \n"
|
|
)
|
|
|
|
return res
|
|
|
|
def teardown(self, stage):
|
|
self._action_count = {}
|
|
self._action_first_occurrence = {}
|
|
super().teardown(stage=stage)
|
|
|
|
.. code-block:: python
|
|
|
|
trainer = Trainer(profiler=ActionCountProfiler())
|
|
trainer.fit(...)
|
|
|
|
----
|
|
|
|
**********************************
|
|
Profile custom actions of interest
|
|
**********************************
|
|
To profile a specific action of interest, reference a profiler in the LightningModule.
|
|
|
|
.. code-block:: python
|
|
|
|
from lightning.pytorch.profilers import SimpleProfiler, PassThroughProfiler
|
|
|
|
|
|
class MyModel(LightningModule):
|
|
def __init__(self, profiler=None):
|
|
self.profiler = profiler or PassThroughProfiler()
|
|
|
|
To profile in any part of your code, use the **self.profiler.profile()** function
|
|
|
|
.. code-block:: python
|
|
|
|
class MyModel(LightningModule):
|
|
def custom_processing_step(self, data):
|
|
with self.profiler.profile("my_custom_action"):
|
|
...
|
|
return data
|
|
|
|
Here's the full code:
|
|
|
|
.. code-block:: python
|
|
|
|
from lightning.pytorch.profilers import SimpleProfiler, PassThroughProfiler
|
|
|
|
|
|
class MyModel(LightningModule):
|
|
def __init__(self, profiler=None):
|
|
self.profiler = profiler or PassThroughProfiler()
|
|
|
|
def custom_processing_step(self, data):
|
|
with self.profiler.profile("my_custom_action"):
|
|
...
|
|
return data
|
|
|
|
|
|
profiler = SimpleProfiler()
|
|
model = MyModel(profiler)
|
|
trainer = Trainer(profiler=profiler, max_epochs=1)
|