lightning/docs/source-pytorch/data/access.rst

44 lines
1.7 KiB
ReStructuredText

:orphan:
Accessing DataLoaders
=====================
In the case that you require access to the :class:`torch.utils.data.DataLoader` or :class:`torch.utils.data.Dataset` objects, DataLoaders for each step can be accessed
via the trainer properties :meth:`~lightning.pytorch.trainer.trainer.Trainer.train_dataloader`,
:meth:`~lightning.pytorch.trainer.trainer.Trainer.val_dataloaders`,
:meth:`~lightning.pytorch.trainer.trainer.Trainer.test_dataloaders`, and
:meth:`~lightning.pytorch.trainer.trainer.Trainer.predict_dataloaders`.
.. code-block:: python
dataloaders = trainer.train_dataloader
dataloaders = trainer.val_dataloaders
dataloaders = trainer.test_dataloaders
dataloaders = trainer.predict_dataloaders
These properties will match exactly what was returned in your ``*_dataloader`` hooks or passed to the ``Trainer``,
meaning that if you returned a dictionary of dataloaders, these will return a dictionary of dataloaders.
Replacing DataLoaders
---------------------
If you are using a :class:`~lightning.pytorch.utilities.CombinedLoader`. A flattened list of DataLoaders can be accessed by doing:
.. code-block:: python
from lightning.pytorch.utilities import CombinedLoader
iterables = {"dl1": dl1, "dl2": dl2}
combined_loader = CombinedLoader(iterables)
# access the original iterables
assert combined_loader.iterables is iterables
# the `.flattened` property can be convenient
assert combined_loader.flattened == [dl1, dl2]
# for example, to do a simple loop
updated = []
for dl in combined_loader.flattened:
new_dl = apply_some_transformation_to(dl)
updated.append(new_dl)
# it also allows you to easily replace the dataloaders
combined_loader.flattened = updated