lightning/tests/test_profiler.py

340 lines
11 KiB
Python

# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
import os
import time
from distutils.version import LooseVersion
from pathlib import Path
import numpy as np
import pytest
import torch
from pytorch_lightning import Trainer
from pytorch_lightning.callbacks import Callback
from pytorch_lightning.profiler import AdvancedProfiler, PyTorchProfiler, SimpleProfiler
from tests.helpers import BoringModel
from tests.helpers.runif import RunIf
PROFILER_OVERHEAD_MAX_TOLERANCE = 0.0005
def _get_python_cprofile_total_duration(profile):
return sum([x.inlinetime for x in profile.getstats()])
def _sleep_generator(durations):
"""
the profile_iterable method needs an iterable in which we can ensure that we're
properly timing how long it takes to call __next__
"""
for duration in durations:
time.sleep(duration)
yield duration
@pytest.fixture
def simple_profiler():
profiler = SimpleProfiler()
return profiler
@pytest.mark.parametrize(["action", "expected"], [
pytest.param("a", [3, 1]),
pytest.param("b", [2]),
pytest.param("c", [1]),
])
def test_simple_profiler_durations(simple_profiler, action: str, expected: list):
"""Ensure the reported durations are reasonably accurate."""
for duration in expected:
with simple_profiler.profile(action):
time.sleep(duration)
# different environments have different precision when it comes to time.sleep()
# see: https://github.com/PyTorchLightning/pytorch-lightning/issues/796
np.testing.assert_allclose(simple_profiler.recorded_durations[action], expected, rtol=0.2)
@pytest.mark.parametrize(["action", "expected"], [
pytest.param("a", [3, 1]),
pytest.param("b", [2]),
pytest.param("c", [1]),
])
def test_simple_profiler_iterable_durations(simple_profiler, action: str, expected: list):
"""Ensure the reported durations are reasonably accurate."""
iterable = _sleep_generator(expected)
for _ in simple_profiler.profile_iterable(iterable, action):
pass
# we exclude the last item in the recorded durations since that's when StopIteration is raised
np.testing.assert_allclose(simple_profiler.recorded_durations[action][:-1], expected, rtol=0.2)
def test_simple_profiler_overhead(simple_profiler, n_iter=5):
"""Ensure that the profiler doesn't introduce too much overhead during training."""
for _ in range(n_iter):
with simple_profiler.profile("no-op"):
pass
durations = np.array(simple_profiler.recorded_durations["no-op"])
assert all(durations < PROFILER_OVERHEAD_MAX_TOLERANCE)
def test_simple_profiler_describe(caplog, simple_profiler):
"""Ensure the profiler won't fail when reporting the summary."""
with caplog.at_level(logging.INFO):
simple_profiler.describe()
assert "Profiler Report" in caplog.text
def test_simple_profiler_value_errors(simple_profiler):
"""Ensure errors are raised where expected."""
action = "test"
with pytest.raises(ValueError):
simple_profiler.stop(action)
simple_profiler.start(action)
with pytest.raises(ValueError):
simple_profiler.start(action)
simple_profiler.stop(action)
@pytest.fixture
def advanced_profiler(tmpdir):
profiler = AdvancedProfiler(output_filename=os.path.join(tmpdir, "profiler.txt"))
return profiler
@pytest.mark.parametrize(["action", "expected"], [
pytest.param("a", [3, 1]),
pytest.param("b", [2]),
pytest.param("c", [1]),
])
def test_advanced_profiler_durations(advanced_profiler, action: str, expected: list):
for duration in expected:
with advanced_profiler.profile(action):
time.sleep(duration)
# different environments have different precision when it comes to time.sleep()
# see: https://github.com/PyTorchLightning/pytorch-lightning/issues/796
recored_total_duration = _get_python_cprofile_total_duration(advanced_profiler.profiled_actions[action])
expected_total_duration = np.sum(expected)
np.testing.assert_allclose(recored_total_duration, expected_total_duration, rtol=0.2)
@pytest.mark.parametrize(["action", "expected"], [
pytest.param("a", [3, 1]),
pytest.param("b", [2]),
pytest.param("c", [1]),
])
def test_advanced_profiler_iterable_durations(advanced_profiler, action: str, expected: list):
"""Ensure the reported durations are reasonably accurate."""
iterable = _sleep_generator(expected)
for _ in advanced_profiler.profile_iterable(iterable, action):
pass
recored_total_duration = _get_python_cprofile_total_duration(advanced_profiler.profiled_actions[action])
expected_total_duration = np.sum(expected)
np.testing.assert_allclose(recored_total_duration, expected_total_duration, rtol=0.2)
def test_advanced_profiler_overhead(advanced_profiler, n_iter=5):
"""
ensure that the profiler doesn't introduce too much overhead during training
"""
for _ in range(n_iter):
with advanced_profiler.profile("no-op"):
pass
action_profile = advanced_profiler.profiled_actions["no-op"]
total_duration = _get_python_cprofile_total_duration(action_profile)
average_duration = total_duration / n_iter
assert average_duration < PROFILER_OVERHEAD_MAX_TOLERANCE
def test_advanced_profiler_describe(tmpdir, advanced_profiler):
"""
ensure the profiler won't fail when reporting the summary
"""
# record at least one event
with advanced_profiler.profile("test"):
pass
# log to stdout and print to file
advanced_profiler.describe()
data = Path(advanced_profiler.output_fname).read_text()
assert len(data) > 0
def test_advanced_profiler_value_errors(advanced_profiler):
"""Ensure errors are raised where expected."""
action = "test"
with pytest.raises(ValueError):
advanced_profiler.stop(action)
advanced_profiler.start(action)
advanced_profiler.stop(action)
@pytest.fixture
def pytorch_profiler(tmpdir):
profiler = PyTorchProfiler(output_filename=os.path.join(tmpdir, "profiler.txt"), local_rank=0)
return profiler
def test_pytorch_profiler_describe(pytorch_profiler):
"""Ensure the profiler won't fail when reporting the summary."""
with pytorch_profiler.profile("test_step"):
pass
# log to stdout and print to file
pytorch_profiler.describe()
data = Path(pytorch_profiler.output_fname).read_text()
assert len(data) > 0
def test_pytorch_profiler_value_errors(pytorch_profiler):
"""Ensure errors are raised where expected."""
action = "test_step"
with pytest.raises(ValueError):
pytorch_profiler.stop(action)
pytorch_profiler.start(action)
pytorch_profiler.stop(action)
@RunIf(min_gpus=2, special=True)
@pytest.mark.parametrize("use_output_filename", [False, True])
def test_pytorch_profiler_trainer_ddp(tmpdir, use_output_filename):
"""Ensure that the profiler can be given to the training and default step are properly recorded. """
if use_output_filename:
output_filename = os.path.join(tmpdir, "profiler.txt")
else:
output_filename = None
profiler = PyTorchProfiler(output_filename=output_filename)
model = BoringModel()
trainer = Trainer(
fast_dev_run=True,
profiler=profiler,
accelerator="ddp",
gpus=2,
)
trainer.fit(model)
enabled = use_output_filename or not use_output_filename and profiler.local_rank == 0
if enabled:
assert len(profiler.summary()) > 0
assert set(profiler.profiled_actions.keys()) == {'training_step_and_backward', 'validation_step'}
else:
assert profiler.summary() is None
assert set(profiler.profiled_actions.keys()) == set()
# todo (tchaton) add support for all ranks
if use_output_filename and os.getenv("LOCAL_RANK") == "0":
data = Path(profiler.output_fname).read_text()
assert len(data) > 0
def test_pytorch_profiler_nested(tmpdir):
"""Ensure that the profiler handles nested context"""
pytorch_profiler = PyTorchProfiler(
profiled_functions=["a", "b", "c"], use_cuda=False, output_filename=os.path.join(tmpdir, "profiler.txt")
)
with pytorch_profiler.profile("a"):
a = torch.ones(42)
with pytorch_profiler.profile("b"):
b = torch.zeros(42)
with pytorch_profiler.profile("c"):
_ = a + b
pa = pytorch_profiler.profiled_actions
# From PyTorch 1.8.0, less operation are being traced.
if LooseVersion(torch.__version__) >= LooseVersion("1.8.0"):
expected_ = {
'a': ['ones', 'empty', 'fill_', 'zeros', 'empty', 'zero_', 'add'],
'b': ['zeros', 'empty', 'zero_'],
'c': ['add'],
}
# From PyTorch 1.6.0, more operation are being traced.
elif LooseVersion(torch.__version__) >= LooseVersion("1.6.0"):
expected_ = {
'a': ['ones', 'empty', 'fill_', 'zeros', 'empty', 'zero_', 'fill_', 'add', 'empty'],
'b': ['zeros', 'empty', 'zero_', 'fill_'],
'c': ['add', 'empty'],
}
else:
expected_ = {
'a': ['add'],
'b': [],
'c': ['add'],
}
for n in ('a', 'b', 'c'):
pa[n] = [e.name for e in pa[n]]
if LooseVersion(torch.__version__) >= LooseVersion("1.7.1"):
pa[n] = [e.replace("aten::", "") for e in pa[n]]
assert pa[n] == expected_[n]
@RunIf(min_gpus=1, special=True)
def test_pytorch_profiler_nested_emit_nvtx(tmpdir):
"""
This test check emit_nvtx is correctly supported
"""
profiler = PyTorchProfiler(use_cuda=True, emit_nvtx=True)
model = BoringModel()
trainer = Trainer(
fast_dev_run=True,
profiler=profiler,
gpus=1,
)
trainer.fit(model)
@pytest.mark.parametrize("cls", (SimpleProfiler, AdvancedProfiler, PyTorchProfiler))
def test_profiler_teardown(tmpdir, cls):
"""
This test checks if profiler teardown method is called when trainer is exiting.
"""
class TestCallback(Callback):
def on_fit_end(self, trainer, pl_module) -> None:
assert trainer.profiler.output_file is not None
profiler = cls(output_filename=os.path.join(tmpdir, "profiler.txt"))
model = BoringModel()
trainer = Trainer(default_root_dir=tmpdir, fast_dev_run=True, profiler=profiler, callbacks=[TestCallback()])
trainer.fit(model)
assert profiler.output_file is None