lightning/examples/fabric/reinforcement_learning/train_fabric.py

211 lines
8.1 KiB
Python

"""
Proximal Policy Optimization (PPO) - Accelerated with Lightning Fabric
Author: Federico Belotti @belerico
Adapted from https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/ppo.py
Based on the paper: https://arxiv.org/abs/1707.06347
Requirements:
- gymnasium[box2d]>=0.27.1
- moviepy
- lightning
- torchmetrics
- tensorboard
Run it with:
fabric run --accelerator=cpu --strategy=ddp --devices=2 train_fabric.py
"""
import argparse
import os
import time
from datetime import datetime
from typing import Dict
import gymnasium as gym
import torch
import torchmetrics
from lightning.fabric import Fabric
from lightning.fabric.loggers import TensorBoardLogger
from rl.agent import PPOLightningAgent
from rl.utils import linear_annealing, make_env, parse_args, test
from torch import Tensor
from torch.utils.data import BatchSampler, DistributedSampler, RandomSampler
def train(
fabric: Fabric,
agent: PPOLightningAgent,
optimizer: torch.optim.Optimizer,
data: Dict[str, Tensor],
global_step: int,
args: argparse.Namespace,
):
indexes = list(range(data["obs"].shape[0]))
if args.share_data:
sampler = DistributedSampler(
indexes, num_replicas=fabric.world_size, rank=fabric.global_rank, shuffle=True, seed=args.seed
)
else:
sampler = RandomSampler(indexes)
sampler = BatchSampler(sampler, batch_size=args.per_rank_batch_size, drop_last=False)
for epoch in range(args.update_epochs):
if args.share_data:
sampler.sampler.set_epoch(epoch)
for batch_idxes in sampler:
loss = agent.training_step({k: v[batch_idxes] for k, v in data.items()})
optimizer.zero_grad(set_to_none=True)
fabric.backward(loss)
fabric.clip_gradients(agent, optimizer, max_norm=args.max_grad_norm)
optimizer.step()
agent.on_train_epoch_end(global_step)
def main(args: argparse.Namespace):
run_name = f"{args.env_id}_{args.exp_name}_{args.seed}_{int(time.time())}"
logger = TensorBoardLogger(
root_dir=os.path.join("logs", "fabric_logs", datetime.today().strftime("%Y-%m-%d_%H-%M-%S")), name=run_name
)
# Initialize Fabric
fabric = Fabric(loggers=logger)
rank = fabric.global_rank
world_size = fabric.world_size
device = fabric.device
fabric.seed_everything(args.seed)
torch.backends.cudnn.deterministic = args.torch_deterministic
# Log hyperparameters
fabric.logger.experiment.add_text(
"hyperparameters",
"|param|value|\n|-|-|\n{}".format("\n".join([f"|{key}|{value}|" for key, value in vars(args).items()])),
)
# Environment setup
envs = gym.vector.SyncVectorEnv([
make_env(args.env_id, args.seed + rank * args.num_envs + i, rank, args.capture_video, logger.log_dir, "train")
for i in range(args.num_envs)
])
assert isinstance(envs.single_action_space, gym.spaces.Discrete), "only discrete action space is supported"
# Define the agent and the optimizer and setup them with Fabric
agent: PPOLightningAgent = PPOLightningAgent(
envs,
act_fun=args.activation_function,
vf_coef=args.vf_coef,
ent_coef=args.ent_coef,
clip_coef=args.clip_coef,
clip_vloss=args.clip_vloss,
ortho_init=args.ortho_init,
normalize_advantages=args.normalize_advantages,
)
optimizer = agent.configure_optimizers(args.learning_rate)
agent, optimizer = fabric.setup(agent, optimizer)
# Player metrics
rew_avg = torchmetrics.MeanMetric().to(device)
ep_len_avg = torchmetrics.MeanMetric().to(device)
# Local data
obs = torch.zeros((args.num_steps, args.num_envs) + envs.single_observation_space.shape, device=device)
actions = torch.zeros((args.num_steps, args.num_envs) + envs.single_action_space.shape, device=device)
logprobs = torch.zeros((args.num_steps, args.num_envs), device=device)
rewards = torch.zeros((args.num_steps, args.num_envs), device=device)
dones = torch.zeros((args.num_steps, args.num_envs), device=device)
values = torch.zeros((args.num_steps, args.num_envs), device=device)
# Global variables
global_step = 0
start_time = time.time()
single_global_rollout = int(args.num_envs * args.num_steps * world_size)
num_updates = args.total_timesteps // single_global_rollout
# Get the first environment observation and start the optimization
next_obs = torch.tensor(envs.reset(seed=args.seed)[0], device=device)
next_done = torch.zeros(args.num_envs, device=device)
for update in range(1, num_updates + 1):
# Learning rate annealing
if args.anneal_lr:
linear_annealing(optimizer, update, num_updates, args.learning_rate)
fabric.log("Info/learning_rate", optimizer.param_groups[0]["lr"], global_step)
for step in range(0, args.num_steps):
global_step += args.num_envs * world_size
obs[step] = next_obs
dones[step] = next_done
# Sample an action given the observation received by the environment
with torch.no_grad():
action, logprob, _, value = agent.get_action_and_value(next_obs)
values[step] = value.flatten()
actions[step] = action
logprobs[step] = logprob
# Single environment step
next_obs, reward, done, truncated, info = envs.step(action.cpu().numpy())
done = torch.logical_or(torch.tensor(done), torch.tensor(truncated))
rewards[step] = torch.tensor(reward, device=device, dtype=torch.float32).view(-1)
next_obs, next_done = torch.tensor(next_obs, device=device), done.to(device)
if "final_info" in info:
for i, agent_final_info in enumerate(info["final_info"]):
if agent_final_info is not None and "episode" in agent_final_info:
fabric.print(
f"Rank-0: global_step={global_step}, reward_env_{i}={agent_final_info['episode']['r'][0]}"
)
rew_avg(agent_final_info["episode"]["r"][0])
ep_len_avg(agent_final_info["episode"]["l"][0])
# Sync the metrics
rew_avg_reduced = rew_avg.compute()
if not rew_avg_reduced.isnan():
fabric.log("Rewards/rew_avg", rew_avg_reduced, global_step)
ep_len_avg_reduced = ep_len_avg.compute()
if not ep_len_avg_reduced.isnan():
fabric.log("Game/ep_len_avg", ep_len_avg_reduced, global_step)
rew_avg.reset()
ep_len_avg.reset()
# Estimate returns with GAE (https://arxiv.org/abs/1506.02438)
returns, advantages = agent.estimate_returns_and_advantages(
rewards, values, dones, next_obs, next_done, args.num_steps, args.gamma, args.gae_lambda
)
# Flatten the batch
local_data = {
"obs": obs.reshape((-1,) + envs.single_observation_space.shape),
"logprobs": logprobs.reshape(-1),
"actions": actions.reshape((-1,) + envs.single_action_space.shape),
"advantages": advantages.reshape(-1),
"returns": returns.reshape(-1),
"values": values.reshape(-1),
}
if args.share_data:
# Gather all the tensors from all the world and reshape them
gathered_data = fabric.all_gather(local_data)
for k, v in gathered_data.items():
if k == "obs":
gathered_data[k] = v.reshape((-1,) + envs.single_observation_space.shape)
elif k == "actions":
gathered_data[k] = v.reshape((-1,) + envs.single_action_space.shape)
else:
gathered_data[k] = v.reshape(-1)
else:
gathered_data = local_data
# Train the agent
train(fabric, agent, optimizer, gathered_data, global_step, args)
fabric.log("Time/step_per_second", int(global_step / (time.time() - start_time)), global_step)
envs.close()
if fabric.is_global_zero:
test(agent.module, device, fabric.logger.experiment, args)
if __name__ == "__main__":
args = parse_args()
main(args)