lightning/tests/core/test_lightning_optimizer.py

330 lines
11 KiB
Python

# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from unittest.mock import patch
import torch
from torch.optim import Adam, Optimizer
from pytorch_lightning import Trainer
from pytorch_lightning.core.optimizer import LightningOptimizer
from tests.helpers.boring_model import BoringModel
def test_lightning_optimizer(tmpdir):
"""
Test that optimizer are correctly wrapped by our LightningOptimizer
"""
class TestModel(BoringModel):
def configure_optimizers(self):
optimizer = torch.optim.SGD(self.layer.parameters(), lr=0.1)
lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=1)
return [optimizer], [lr_scheduler]
model = TestModel()
trainer = Trainer(
default_root_dir=tmpdir,
limit_train_batches=1,
limit_val_batches=1,
max_epochs=1,
weights_summary=None,
)
trainer.fit(model)
groups = "{'dampening': 0, 'initial_lr': 0.1, 'lr': 0.01, 'momentum': 0, 'nesterov': False, 'weight_decay': 0}"
expected = f"LightningSGD(groups=[{groups}])"
assert trainer._lightning_optimizers[0].__repr__() == expected
def test_lightning_optimizer_from_user(tmpdir):
"""
Test that the user can use our LightningOptimizer. Not recommended.
"""
class TestModel(BoringModel):
def configure_optimizers(self):
optimizer = torch.optim.Adam(self.layer.parameters(), lr=0.1)
optimizer = LightningOptimizer(optimizer)
lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=1)
return [optimizer], [lr_scheduler]
model = TestModel()
trainer = Trainer(
default_root_dir=tmpdir,
limit_train_batches=1,
limit_val_batches=1,
max_epochs=1,
weights_summary=None,
)
trainer.fit(model)
groups = "{'amsgrad': False, 'betas': (0.9, 0.999), 'eps': 1e-08, 'initial_lr': 0.1, 'lr': 0.01, 'weight_decay': 0}"
expected = f"LightningAdam(groups=[{groups}])"
assert trainer._lightning_optimizers[0].__repr__() == expected
@patch("torch.optim.Adam.step", autospec=True)
@patch("torch.optim.SGD.step", autospec=True)
def test_lightning_optimizer_manual_optimization(mock_sgd_step, mock_adam_step, tmpdir):
"""
Test that the user can use our LightningOptimizer. Not recommended for now.
"""
class TestModel(BoringModel):
def __init__(self):
super().__init__()
self.automatic_optimization = False
def training_step(self, batch, batch_idx, optimizer_idx=None):
(opt_1, opt_2) = self.optimizers()
assert isinstance(opt_1, LightningOptimizer)
assert isinstance(opt_2, LightningOptimizer)
output = self.layer(batch)
loss_1 = self.loss(batch, output)
self.manual_backward(loss_1)
opt_1.step()
opt_1.zero_grad()
output = self.layer(batch)
loss_2 = self.loss(batch, output)
self.manual_backward(loss_2)
if batch_idx % 2 == 0:
opt_2.step()
opt_2.zero_grad()
def configure_optimizers(self):
optimizer_1 = torch.optim.SGD(self.layer.parameters(), lr=0.1)
optimizer_2 = torch.optim.Adam(self.layer.parameters(), lr=0.1)
optimizer_1 = LightningOptimizer(optimizer_1)
lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer_1, step_size=1)
return [optimizer_1, optimizer_2], [lr_scheduler]
model = TestModel()
model.training_step_end = None
model.training_epoch_end = None
trainer = Trainer(
default_root_dir=tmpdir,
limit_train_batches=8,
limit_val_batches=1,
max_epochs=1,
weights_summary=None,
)
trainer.fit(model)
assert len(mock_sgd_step.mock_calls) == 8
assert len(mock_adam_step.mock_calls) == 4
@patch("torch.optim.Adam.step", autospec=True)
@patch("torch.optim.SGD.step", autospec=True)
def test_lightning_optimizer_manual_optimization_and_accumulated_gradients(mock_sgd_step, mock_adam_step, tmpdir):
"""
Test that the user can use our LightningOptimizer. Not recommended.
"""
class TestModel(BoringModel):
def __init__(self):
super().__init__()
self.automatic_optimization = False
def training_step(self, batch, batch_idx, optimizer_idx=None):
(opt_1, opt_2) = self.optimizers()
assert isinstance(opt_1, LightningOptimizer)
assert isinstance(opt_2, LightningOptimizer)
output = self.layer(batch)
loss_1 = self.loss(batch, output)
self.manual_backward(loss_1)
opt_1.step()
def closure():
output = self.layer(batch)
loss_2 = self.loss(batch, output)
self.manual_backward(loss_2)
opt_2.step(closure=closure)
def configure_optimizers(self):
optimizer_1 = torch.optim.SGD(self.layer.parameters(), lr=0.1)
optimizer_2 = torch.optim.Adam(self.layer.parameters(), lr=0.1)
optimizer_1 = LightningOptimizer(optimizer_1)
lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer_1, step_size=1)
return [optimizer_1, optimizer_2], [lr_scheduler]
model = TestModel()
model.training_step_end = None
model.training_epoch_end = None
trainer = Trainer(
default_root_dir=tmpdir,
limit_train_batches=8,
limit_val_batches=1,
max_epochs=1,
weights_summary=None,
accumulate_grad_batches=2,
)
trainer.fit(model)
assert len(mock_sgd_step.mock_calls) == 8
assert len(mock_adam_step.mock_calls) == 8
def test_state(tmpdir):
model = torch.nn.Linear(3, 4)
optimizer = torch.optim.Adam(model.parameters())
lightning_optimizer = LightningOptimizer(optimizer)
# test state
assert optimizer.state == lightning_optimizer.state
lightning_optimizer.state = optimizer.state
assert optimizer.state == lightning_optimizer.state
# test param_groups
assert optimizer.param_groups == lightning_optimizer.param_groups
lightning_optimizer.param_groups = optimizer.param_groups
assert optimizer.param_groups == lightning_optimizer.param_groups
# test defaults
assert optimizer.defaults == lightning_optimizer.defaults
lightning_optimizer.defaults = optimizer.defaults
assert optimizer.defaults == lightning_optimizer.defaults
assert isinstance(lightning_optimizer, LightningOptimizer)
assert isinstance(lightning_optimizer, Adam)
assert isinstance(lightning_optimizer, Optimizer)
lightning_dict = {}
special_attrs = [
"_accumulate_grad_batches",
"_optimizer",
"_optimizer_idx",
"_support_closure",
"_trainer",
"__getstate__",
"__setstate__",
"state_dict",
"load_state_dict",
"zero_grad",
"__setstate__",
"add_param_group",
"_total_optimizer_step_calls",
]
for k, v in lightning_optimizer.__dict__.items():
if k not in special_attrs:
lightning_dict[k] = v
assert lightning_dict == optimizer.__dict__
assert optimizer.state_dict() == lightning_optimizer.state_dict()
assert optimizer.state == lightning_optimizer.state
def test_lightning_optimizer_automatic_optimization(tmpdir):
"""
Test lightning optimize works with in automatic_optimization
"""
class TestModel(BoringModel):
def training_step(self, batch, batch_idx, optimizer_idx=None):
output = self.layer(batch)
loss = self.loss(batch, output)
return {"loss": loss}
def training_epoch_end(self, outputs):
outputs = sum(outputs, [])
torch.stack([x["loss"] for x in outputs]).mean()
def optimizer_step(
self, epoch, batch_idx, optimizer, optimizer_idx, optimizer_closure, on_tpu, using_native_amp, using_lbfgs
):
assert optimizer_closure.__name__ == "train_step_and_backward_closure"
optimizer_closure()
if batch_idx % 2 == 0:
optimizer.step()
optimizer.zero_grad()
def configure_optimizers(self):
optimizer_1 = torch.optim.SGD(self.layer.parameters(), lr=0.1)
optimizer_2 = torch.optim.Adam(self.layer.parameters(), lr=0.1)
optimizer_1 = LightningOptimizer(optimizer_1)
lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer_1, step_size=1)
return [optimizer_1, optimizer_2], [lr_scheduler]
model = TestModel()
trainer = Trainer(
default_root_dir=tmpdir,
limit_train_batches=10,
limit_val_batches=1,
max_epochs=1,
weights_summary=None,
)
trainer.fit(model)
def test_lightning_optimizer_automatic_optimization_optimizer_zero_grad(tmpdir):
"""
Test lightning optimize works with optimizer_zero_grad overrides in automatic_optimization
"""
with patch("torch.optim.Adam.zero_grad") as adam_zero_grad, \
patch("torch.optim.SGD.zero_grad") as sgd_zero_grad:
class TestModel(BoringModel):
def training_step(self, batch, batch_idx, optimizer_idx=None):
output = self.layer(batch)
loss = self.loss(batch, output)
return {"loss": loss}
def training_epoch_end(self, outputs):
outputs = sum(outputs, [])
torch.stack([x["loss"] for x in outputs]).mean()
def optimizer_zero_grad(self, epoch: int, batch_idx: int, optimizer: Optimizer, optimizer_idx: int):
if optimizer_idx == 0:
if batch_idx % 2 == 0:
optimizer.zero_grad()
if optimizer_idx == 1:
if batch_idx % 5 == 0:
optimizer.zero_grad()
def configure_optimizers(self):
optimizer_1 = torch.optim.SGD(self.layer.parameters(), lr=0.1)
optimizer_2 = torch.optim.Adam(self.layer.parameters(), lr=0.1)
lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer_1, step_size=1)
return [optimizer_1, optimizer_2], [lr_scheduler]
model = TestModel()
trainer = Trainer(
default_root_dir=tmpdir,
limit_train_batches=20,
limit_val_batches=1,
max_epochs=1,
weights_summary=None,
)
trainer.fit(model)
assert adam_zero_grad.call_count == 4
assert sgd_zero_grad.call_count == 10