lightning/tests/trainer/test_config_validator.py

195 lines
6.8 KiB
Python

# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import pytest
import torch
from pytorch_lightning import LightningDataModule, LightningModule, Trainer
from pytorch_lightning.callbacks.callback import Callback
from pytorch_lightning.demos.boring_classes import BoringDataModule
from pytorch_lightning.utilities.exceptions import MisconfigurationException
from tests.helpers import BoringModel, RandomDataset
def test_wrong_train_setting(tmpdir):
"""
* Test that an error is thrown when no `train_dataloader()` is defined
* Test that an error is thrown when no `training_step()` is defined
"""
trainer = Trainer(default_root_dir=tmpdir, max_epochs=1)
with pytest.raises(MisconfigurationException, match=r"No `train_dataloader\(\)` method defined."):
model = BoringModel()
model.train_dataloader = None
trainer.fit(model)
with pytest.raises(MisconfigurationException, match=r"No `training_step\(\)` method defined."):
model = BoringModel()
model.training_step = None
trainer.fit(model)
def test_wrong_configure_optimizers(tmpdir):
"""Test that an error is thrown when no `configure_optimizers()` is defined."""
trainer = Trainer(default_root_dir=tmpdir, max_epochs=1)
with pytest.raises(MisconfigurationException, match=r"No `configure_optimizers\(\)` method defined."):
model = BoringModel()
model.configure_optimizers = None
trainer.fit(model)
def test_fit_val_loop_config(tmpdir):
"""When either val loop or val data are missing raise warning."""
trainer = Trainer(default_root_dir=tmpdir, max_epochs=1)
# no val data has val loop
with pytest.warns(UserWarning, match=r"You passed in a `val_dataloader` but have no `validation_step`"):
model = BoringModel()
model.validation_step = None
trainer.fit(model)
# has val loop but no val data
with pytest.warns(UserWarning, match=r"You defined a `validation_step` but have no `val_dataloader`"):
model = BoringModel()
model.val_dataloader = None
trainer.fit(model)
def test_eval_loop_config(tmpdir):
"""When either eval step or eval data is missing."""
trainer = Trainer(default_root_dir=tmpdir, max_epochs=1)
# has val step but no val data
model = BoringModel()
model.val_dataloader = None
with pytest.raises(MisconfigurationException, match=r"No `val_dataloader\(\)` method defined"):
trainer.validate(model)
# has test data but no val step
model = BoringModel()
model.validation_step = None
with pytest.raises(MisconfigurationException, match=r"No `validation_step\(\)` method defined"):
trainer.validate(model)
# has test loop but no test data
model = BoringModel()
model.test_dataloader = None
with pytest.raises(MisconfigurationException, match=r"No `test_dataloader\(\)` method defined"):
trainer.test(model)
# has test data but no test step
model = BoringModel()
model.test_step = None
with pytest.raises(MisconfigurationException, match=r"No `test_step\(\)` method defined"):
trainer.test(model)
# has predict step but no predict data
model = BoringModel()
model.predict_dataloader = None
with pytest.raises(MisconfigurationException, match=r"No `predict_dataloader\(\)` method defined"):
trainer.predict(model)
# has predict data but no predict_step
model = BoringModel()
model.predict_step = None
with pytest.raises(MisconfigurationException, match=r"`predict_step` cannot be None."):
trainer.predict(model)
# has predict data but no forward
model = BoringModel()
model.forward = None
with pytest.raises(MisconfigurationException, match=r"requires `forward` method to run."):
trainer.predict(model)
@pytest.mark.parametrize("datamodule", [False, True])
def test_trainer_predict_verify_config(tmpdir, datamodule):
class TestModel(LightningModule):
def __init__(self):
super().__init__()
self.layer = torch.nn.Linear(32, 2)
def forward(self, x):
return self.layer(x)
class TestLightningDataModule(LightningDataModule):
def __init__(self, dataloaders):
super().__init__()
self._dataloaders = dataloaders
def test_dataloader(self):
return self._dataloaders
def predict_dataloader(self):
return self._dataloaders
data = [torch.utils.data.DataLoader(RandomDataset(32, 2)), torch.utils.data.DataLoader(RandomDataset(32, 2))]
if datamodule:
data = TestLightningDataModule(data)
model = TestModel()
trainer = Trainer(default_root_dir=tmpdir)
results = trainer.predict(model, data)
assert len(results) == 2
assert results[0][0].shape == torch.Size([1, 2])
def test_trainer_manual_optimization_config(tmpdir):
"""Test error message when requesting Trainer features unsupported with manual optimization."""
model = BoringModel()
model.automatic_optimization = False
trainer = Trainer(gradient_clip_val=1.0)
with pytest.raises(MisconfigurationException, match="Automatic gradient clipping is not supported"):
trainer.fit(model)
trainer = Trainer(accumulate_grad_batches=2)
with pytest.raises(MisconfigurationException, match="Automatic gradient accumulation is not supported"):
trainer.fit(model)
def test_invalid_setup_method():
"""Test error message when `setup` method of `LightningModule` or `LightningDataModule` is not defined
correctly."""
class CustomModel(BoringModel):
def setup(self):
pass
class CustomDataModule(BoringDataModule):
def setup(self):
pass
class CustomBoringCallback(Callback):
def setup(self, pl_module, trainer):
pass
fit_kwargs = [
{"model": CustomModel(), "datamodule": BoringDataModule()},
{"model": BoringModel(), "datamodule": CustomDataModule()},
]
for kwargs in fit_kwargs:
trainer = Trainer(fast_dev_run=True)
with pytest.raises(MisconfigurationException, match="does not have a `stage` argument"):
trainer.fit(**kwargs)
trainer = Trainer(fast_dev_run=True, callbacks=[CustomBoringCallback()])
model = BoringModel()
with pytest.raises(MisconfigurationException, match="does not have a `stage` argument"):
trainer.fit(model)