lightning/tests/lite/test_wrappers.py

199 lines
7.4 KiB
Python

# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from unittest.mock import ANY, Mock
import pytest
import torch
from torch.utils.data.dataloader import DataLoader
from pytorch_lightning.core.mixins import DeviceDtypeModuleMixin
from pytorch_lightning.lite import LightningLite
from pytorch_lightning.lite.wrappers import _LiteDataLoader, _LiteModule, _LiteOptimizer
from tests.helpers.runif import RunIf
class EmptyLite(LightningLite):
def run(self):
pass
def test_lite_module_wraps():
"""Test that the wrapped module is accessible via the property."""
module = Mock()
assert _LiteModule(module, Mock()).module is module
wrapped_module = Mock()
original_module = Mock()
assert _LiteModule(wrapped_module, Mock(), original_module=original_module).module is original_module
def test_lite_module_attribute_lookup():
"""Test that attribute lookup passes through to the original model when possible."""
class OriginalModule(torch.nn.Module):
def __init__(self):
super().__init__()
self.layer = torch.nn.Linear(2, 3)
self.attribute = 1
def method(self):
return 2
original_module = OriginalModule()
class ModuleWrapper(torch.nn.Module):
def __init__(self):
super().__init__()
self.wrapped = original_module
wrapped_module = ModuleWrapper()
lite_module = _LiteModule(wrapped_module, Mock(), original_module=original_module)
assert lite_module.attribute == 1
assert lite_module.layer is original_module.layer
assert lite_module.method() == 2
assert lite_module.forward.__self__.__class__ == _LiteModule
with pytest.raises(AttributeError):
_ = lite_module.not_exists
@RunIf(min_gpus=1)
@pytest.mark.parametrize(
"precision, input_type, expected_type",
[
(32, torch.float16, torch.float32),
(32, torch.float32, torch.float32),
(32, torch.float64, torch.float32),
(32, torch.int, torch.int),
(16, torch.float32, torch.float16),
(16, torch.float64, torch.float16),
(16, torch.long, torch.long),
pytest.param("bf16", torch.float32, torch.bfloat16, marks=RunIf(min_torch="1.10", bf16_cuda=True)),
pytest.param("bf16", torch.float64, torch.bfloat16, marks=RunIf(min_torch="1.10", bf16_cuda=True)),
pytest.param("bf16", torch.bool, torch.bool, marks=RunIf(min_torch="1.10", bf16_cuda=True)),
],
)
def test_lite_module_forward_conversion(precision, input_type, expected_type):
"""Test that the LiteModule performs autocasting on the input tensors and during forward()."""
lite = EmptyLite(precision=precision, accelerator="gpu", devices=1)
device = torch.device("cuda", 0)
def check_autocast(forward_input):
assert precision != 16 or torch.is_autocast_enabled()
return forward_input
module = Mock(wraps=torch.nn.Identity(), side_effect=check_autocast)
lite_module = _LiteModule(module, lite._precision_plugin).to(device)
out = lite_module(torch.tensor([1, 2, 3], dtype=input_type, device=device))
assert module.call_args[0][0].dtype == expected_type
assert out.dtype == input_type or out.dtype == torch.get_default_dtype()
@pytest.mark.parametrize(
"device", [torch.device("cpu"), pytest.param(torch.device("cuda", 0), marks=RunIf(min_gpus=1))]
)
@pytest.mark.parametrize("dtype", [torch.float32, torch.float16])
def test_lite_module_device_dtype_propagation(device, dtype):
"""Test that the LiteModule propagates device and dtype properties to its submodules (e.g. torchmetrics)."""
class DeviceModule(DeviceDtypeModuleMixin):
pass
device_module = DeviceModule()
lite_module = _LiteModule(device_module, Mock())
lite_module.to(device)
assert device_module.device == device
assert lite_module.device == device
lite_module.to(dtype)
assert device_module.dtype == dtype
assert lite_module.dtype == dtype
def test_lite_dataloader_iterator():
"""Test that the iteration over a LiteDataLoader wraps the iterator of the underlying dataloader (no automatic
device placement)."""
dataloader = DataLoader(range(5), batch_size=2)
lite_dataloader = _LiteDataLoader(dataloader)
assert len(lite_dataloader) == len(dataloader) == 3
iterator = iter(dataloader)
lite_iterator = iter(lite_dataloader)
assert torch.equal(next(iterator), next(lite_iterator))
assert torch.equal(next(iterator), next(lite_iterator))
assert torch.equal(next(iterator), next(lite_iterator))
with pytest.raises(StopIteration):
next(iterator)
with pytest.raises(StopIteration):
next(lite_iterator)
@pytest.mark.parametrize(
"src_device, dest_device",
[
(torch.device("cpu"), torch.device("cpu")),
pytest.param(torch.device("cpu"), torch.device("cuda", 0), marks=RunIf(min_gpus=1)),
pytest.param(torch.device("cuda", 0), torch.device("cpu"), marks=RunIf(min_gpus=1)),
],
)
def test_lite_dataloader_device_placement(src_device, dest_device):
"""Test that the LiteDataLoader moves data to the device in its iterator."""
sample0 = torch.tensor(0, device=src_device)
sample1 = torch.tensor(1, device=src_device)
sample2 = {"data": torch.tensor(2, device=src_device)}
sample3 = {"data": torch.tensor(3, device=src_device)}
dataloader = DataLoader([sample0, sample1, sample2, sample3], batch_size=2)
lite_dataloader = _LiteDataLoader(dataloader=dataloader, device=dest_device)
iterator = iter(lite_dataloader)
batch0 = next(iterator)
assert torch.equal(batch0, torch.tensor([0, 1], device=dest_device))
batch1 = next(iterator)
assert torch.equal(batch1["data"], torch.tensor([2, 3], device=dest_device))
def test_lite_optimizer_wraps():
"""Test that the LiteOptimizer fully wraps the optimizer."""
optimizer_cls = torch.optim.SGD
optimizer = Mock(spec=optimizer_cls)
lite_optimizer = _LiteOptimizer(optimizer, Mock())
assert lite_optimizer.optimizer is optimizer
assert isinstance(lite_optimizer, optimizer_cls)
def test_lite_optimizer_state_dict():
"""Test that the LiteOptimizer calls into the strategy to collect the state."""
optimizer = Mock()
strategy = Mock()
lite_optimizer = _LiteOptimizer(optimizer=optimizer, strategy=strategy)
lite_optimizer.state_dict()
strategy.optimizer_state.assert_called_with(optimizer)
def test_lite_optimizer_steps():
"""Test that the LiteOptimizer forwards the step() and zero_grad() calls to the wrapped optimizer."""
optimizer = Mock()
strategy = Mock()
strategy.optimizer_step.return_value = 123
lite_optimizer = _LiteOptimizer(optimizer=optimizer, strategy=strategy)
step_output = lite_optimizer.step()
assert step_output == 123
strategy.optimizer_step.assert_called_once()
strategy.optimizer_step.assert_called_with(optimizer, opt_idx=0, closure=ANY, model=strategy.model)