lightning/tests/strategies/test_ddp_strategy_with_comm...

227 lines
7.8 KiB
Python

# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from unittest import mock
import pytest
import torch
from pytorch_lightning import Trainer
from pytorch_lightning.strategies import DDPSpawnStrategy, DDPStrategy
from pytorch_lightning.utilities import _TORCH_GREATER_EQUAL_1_10
from tests.helpers import BoringModel
from tests.helpers.runif import RunIf
if torch.distributed.is_available():
from torch.distributed.algorithms.ddp_comm_hooks import default_hooks as default
from torch.distributed.algorithms.ddp_comm_hooks import powerSGD_hook as powerSGD
if _TORCH_GREATER_EQUAL_1_10:
import torch.distributed.algorithms.ddp_comm_hooks.post_localSGD_hook as post_localSGD
@RunIf(min_gpus=2, min_torch="1.9.0", skip_windows=True, standalone=True)
def test_ddp_fp16_compress_comm_hook(tmpdir):
"""Test for DDP FP16 compress hook."""
model = BoringModel()
strategy = DDPStrategy(ddp_comm_hook=default.fp16_compress_hook)
trainer = Trainer(
max_epochs=1,
accelerator="gpu",
devices=2,
strategy=strategy,
default_root_dir=tmpdir,
sync_batchnorm=True,
fast_dev_run=True,
)
trainer.fit(model)
trainer_comm_hook = trainer.strategy.model.get_ddp_logging_data().comm_hook
expected_comm_hook = default.fp16_compress_hook.__qualname__
assert trainer_comm_hook == expected_comm_hook
assert trainer.state.finished, f"Training failed with {trainer.state}"
@RunIf(min_gpus=2, min_torch="1.9.0", skip_windows=True, standalone=True)
def test_ddp_sgd_comm_hook(tmpdir):
"""Test for DDP FP16 compress hook."""
model = BoringModel()
strategy = DDPStrategy(
ddp_comm_state=powerSGD.PowerSGDState(process_group=None),
ddp_comm_hook=powerSGD.powerSGD_hook,
)
trainer = Trainer(
max_epochs=1,
accelerator="gpu",
devices=2,
strategy=strategy,
default_root_dir=tmpdir,
sync_batchnorm=True,
fast_dev_run=True,
)
trainer.fit(model)
trainer_comm_hook = trainer.strategy.model.get_ddp_logging_data().comm_hook
expected_comm_hook = powerSGD.powerSGD_hook.__qualname__
assert trainer_comm_hook == expected_comm_hook
assert trainer.state.finished, f"Training failed with {trainer.state}"
@RunIf(min_gpus=2, min_torch="1.9.0", skip_windows=True, standalone=True)
def test_ddp_fp16_compress_wrap_sgd_comm_hook(tmpdir):
"""Test for DDP FP16 compress wrapper for SGD hook."""
model = BoringModel()
strategy = DDPStrategy(
ddp_comm_state=powerSGD.PowerSGDState(process_group=None),
ddp_comm_hook=powerSGD.powerSGD_hook,
ddp_comm_wrapper=default.fp16_compress_wrapper,
)
trainer = Trainer(
max_epochs=1,
accelerator="gpu",
devices=2,
strategy=strategy,
default_root_dir=tmpdir,
sync_batchnorm=True,
fast_dev_run=True,
)
trainer.fit(model)
trainer_comm_hook = trainer.strategy.model.get_ddp_logging_data().comm_hook
expected_comm_hook = default.fp16_compress_wrapper(powerSGD.powerSGD_hook).__qualname__
assert trainer_comm_hook == expected_comm_hook
assert trainer.state.finished, f"Training failed with {trainer.state}"
@RunIf(min_gpus=2, min_torch="1.9.0", skip_windows=True, standalone=True)
def test_ddp_spawn_fp16_compress_comm_hook(tmpdir):
"""Test for DDP Spawn FP16 compress hook."""
model = BoringModel()
strategy = DDPSpawnStrategy(ddp_comm_hook=default.fp16_compress_hook)
trainer = Trainer(
max_epochs=1,
accelerator="gpu",
devices=2,
strategy=strategy,
default_root_dir=tmpdir,
sync_batchnorm=True,
fast_dev_run=True,
)
trainer.fit(model)
assert trainer.state.finished, f"Training failed with {trainer.state}"
@RunIf(min_gpus=2, min_torch="1.10.0", skip_windows=True, standalone=True)
def test_ddp_post_local_sgd_comm_hook(tmpdir):
"""Test for DDP post-localSGD hook."""
model = BoringModel()
strategy = DDPStrategy(
ddp_comm_state=post_localSGD.PostLocalSGDState(
process_group=None,
subgroup=None,
start_localSGD_iter=8,
),
ddp_comm_hook=post_localSGD.post_localSGD_hook,
model_averaging_period=4,
)
trainer = Trainer(
fast_dev_run=True,
accelerator="gpu",
devices=2,
strategy=strategy,
default_root_dir=tmpdir,
sync_batchnorm=True,
)
trainer.fit(model)
trainer_comm_hook = trainer.strategy.model.get_ddp_logging_data().comm_hook
expected_comm_hook = post_localSGD.post_localSGD_hook.__qualname__
assert trainer_comm_hook == expected_comm_hook
assert trainer.state.finished, f"Training failed with {trainer.state}"
@RunIf(skip_windows=True, min_torch="1.10.0", min_gpus=2, standalone=True)
@mock.patch("torch.distributed.algorithms.model_averaging.averagers.PeriodicModelAverager.average_parameters")
def test_post_local_sgd_model_averaging(average_parameters_mock, tmpdir):
"""Test that when using DDP with post-localSGD, model averaging is called."""
model = BoringModel()
# test regular ddp does not call model averaging
trainer = Trainer(
fast_dev_run=True,
accelerator="gpu",
devices=2,
strategy="ddp",
default_root_dir=tmpdir,
sync_batchnorm=True,
)
trainer.fit(model)
average_parameters_mock.assert_not_called()
# test ddp with post-localSGD does call model averaging
ddp_strategy = DDPStrategy(
ddp_comm_state=post_localSGD.PostLocalSGDState(
process_group=None,
subgroup=None,
start_localSGD_iter=8,
),
ddp_comm_hook=post_localSGD.post_localSGD_hook,
model_averaging_period=4,
)
trainer = Trainer(
fast_dev_run=True,
gpus=2,
strategy=ddp_strategy,
default_root_dir=tmpdir,
sync_batchnorm=True,
)
trainer.fit(model)
average_parameters_mock.assert_called()
@RunIf(skip_windows=True, min_torch="1.10.0", min_gpus=2, standalone=True)
@mock.patch("torch.distributed.algorithms.model_averaging.averagers.PeriodicModelAverager.average_parameters")
def test_post_local_sgd_model_averaging_value_error(average_parameters_mock, tmpdir):
"""Test that when using DDP with post-localSGD a ValueError is thrown when the optmizer is
ZeroRedundancyOptimizer."""
from torch.distributed.optim import ZeroRedundancyOptimizer
class OptimizerModel(BoringModel):
def configure_optimizers(self):
return ZeroRedundancyOptimizer(params=self.parameters(), optimizer_class=torch.optim.Adam, lr=0.01)
model = OptimizerModel()
strategy = DDPStrategy(
ddp_comm_state=post_localSGD.PostLocalSGDState(
process_group=None,
subgroup=None,
start_localSGD_iter=8,
),
ddp_comm_hook=post_localSGD.post_localSGD_hook,
model_averaging_period=4,
)
trainer = Trainer(
fast_dev_run=True,
accelerator="gpu",
devices=2,
strategy=strategy,
default_root_dir=tmpdir,
sync_batchnorm=True,
)
with pytest.raises(ValueError, match="Currently model averaging cannot work with a distributed optimizer"):
trainer.fit(model)
average_parameters_mock.assert_not_called()