lightning/pytorch_lightning/accelerators/horovod_accelerator.py

166 lines
6.0 KiB
Python

# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from contextlib import ExitStack
import torch
from torch.optim.lr_scheduler import _LRScheduler
from pytorch_lightning.accelerators.accelerator import Accelerator
from pytorch_lightning.utilities import AMPType
from pytorch_lightning.utilities.distributed import rank_zero_only
try:
import horovod.torch as hvd
except (ModuleNotFoundError, ImportError):
HOROVOD_AVAILABLE = False
else:
HOROVOD_AVAILABLE = True
class HorovodAccelerator(Accelerator):
amp_backend: AMPType
def __init__(self, trainer, cluster_environment=None):
super().__init__(trainer, cluster_environment)
self.nickname = 'horovod'
def setup(self, model):
# call setup after the ddp process has connected
self.trainer.call_setup_hook(model)
if torch.cuda.is_available() and self.trainer.on_gpu:
# Horovod: pin GPU to local rank
assert self.trainer.root_gpu == hvd.local_rank()
torch.cuda.set_device(self.trainer.root_gpu)
model.cuda(self.trainer.root_gpu)
# avoid duplicating progress bar
if hvd.rank() != 0 and self.trainer.progress_bar_callback is not None:
self.trainer.progress_bar_callback.disable()
# CHOOSE OPTIMIZER
# allow for lr schedulers as well
self.setup_optimizers(model)
# Horovod: scale the learning rate by the number of workers to account for
# increased total batch size
for optimizer in self.trainer.optimizers:
for param_group in optimizer.param_groups:
param_group['lr'] *= hvd.size()
# Horovod: adjust base LR used by schedulers to match scaled optimizer initial LR
for scheduler in self.trainer.lr_schedulers:
scheduler = scheduler['scheduler']
if isinstance(scheduler, _LRScheduler):
scheduler.base_lrs = [lr * hvd.size() for lr in scheduler.base_lrs]
# Horovod: broadcast parameters & optimizer state to ensure consistent initialization
hvd.broadcast_parameters(model.state_dict(), root_rank=0)
for optimizer in self.trainer.optimizers:
hvd.broadcast_optimizer_state(optimizer, root_rank=0)
def _filter_named_parameters(model, optimizer):
opt_params = set([p for group in optimizer.param_groups for p in group.get('params', [])])
return [(name, p) for name, p in model.named_parameters() if p in opt_params]
# Horovod: wrap optimizers to perform gradient aggregation via allreduce
self.trainer.optimizers = [
hvd.DistributedOptimizer(optimizer, named_parameters=_filter_named_parameters(model, optimizer))
for optimizer in self.trainer.optimizers
]
# 16-bit
model = self.trainer.precision_connector.connect(model)
# Update logger rank info from Horovod to avoid race conditions from different ranks
# creating directories / writing files in the same locations.
self.trainer.global_rank = hvd.rank()
rank_zero_only.rank = self.trainer.global_rank
self.trainer.model = model
def train(self):
with ExitStack() as stack:
for optimizer in self.trainer.optimizers:
# Synchronization will be performed explicitly following backward()
stack.enter_context(optimizer.skip_synchronize())
# set up training routine
self.trainer.train_loop.setup_training(self.trainer.model)
# train or test
results = self.train_or_test()
# Make sure all workers have finished training before returning to the user
hvd.join()
return results
def teardown(self):
pass
def training_step(self, args):
if self.trainer.on_gpu:
batch = args[0]
batch = self.batch_to_device(batch, hvd.local_rank())
args[0] = batch
if self.trainer.amp_backend == AMPType.NATIVE:
with torch.cuda.amp.autocast():
output = self.trainer.model.training_step(*args)
else:
output = self.trainer.model.training_step(*args)
return output
def validation_step(self, args):
if self.trainer.on_gpu:
batch = args[0]
batch = self.batch_to_device(batch, hvd.local_rank())
args[0] = batch
if self.trainer.amp_backend == AMPType.NATIVE:
with torch.cuda.amp.autocast():
output = self.trainer.model.validation_step(*args)
else:
output = self.trainer.model.validation_step(*args)
return output
def test_step(self, args):
if self.trainer.on_gpu:
batch = args[0]
batch = self.batch_to_device(batch, hvd.local_rank())
args[0] = batch
if self.trainer.amp_backend == AMPType.NATIVE:
with torch.cuda.amp.autocast():
output = self.trainer.model.test_step(*args)
else:
output = self.trainer.model.test_step(*args)
return output
def backward(self, closure_loss, optimizer, opt_idx, *args, **kwargs):
super().backward(closure_loss, optimizer, opt_idx, *args, **kwargs)
optimizer.synchronize()
def on_train_epoch_end(self, outputs):
hvd.join(hvd.local_rank() if self.trainer.on_gpu else -1)
def barrier(self, name: str = None):
hvd.join()
def broadcast(self, obj, src=0):
obj = hvd.broadcast_object(obj, src)
return obj