lightning/pytorch_lightning/accelerators/accelerator_connector.py

396 lines
16 KiB
Python

from pytorch_lightning import accelerators
import os
import torch
from pytorch_lightning.utilities import device_parser
from pytorch_lightning.utilities import rank_zero_only
from pytorch_lightning.utilities.distributed import rank_zero_warn, rank_zero_info
from pytorch_lightning.utilities.exceptions import MisconfigurationException
from pytorch_lightning import _logger as log
from pytorch_lightning.cluster_environments.slurm_environment import SLURMEnvironment
from pytorch_lightning.cluster_environments.torchelastic_environment import TorchElasticEnvironment
from pytorch_lightning.accelerators.accelerator import Accelerator
try:
import torch_xla
except ImportError:
XLA_AVAILABLE = False
else:
XLA_AVAILABLE = True
try:
import horovod.torch as hvd
except (ModuleNotFoundError, ImportError):
HOROVOD_AVAILABLE = False
else:
HOROVOD_AVAILABLE = True
class AcceleratorConnector:
def __init__(self, trainer):
self.trainer = trainer
self.accelerator = None
def on_trainer_init(
self,
num_processes,
tpu_cores,
accelerator,
distributed_backend,
auto_select_gpus,
gpus,
num_nodes,
log_gpu_memory,
sync_batchnorm,
benchmark,
replace_sampler_ddp,
deterministic,
):
# temp until we remove all dist backend references
distributed_backend = self._map_deprecated_dist_backend(accelerator, distributed_backend)
self.trainer.deterministic = deterministic
torch.backends.cudnn.deterministic = self.trainer.deterministic
if self.trainer.deterministic:
# fixing non-deterministic part of horovod
# https://github.com/PyTorchLightning/pytorch-lightning/pull/1572/files#r420279383
os.environ["HOROVOD_FUSION_THRESHOLD"] = str(0)
# distributed backend choice
self.trainer.distributed_backend = distributed_backend.lower() if distributed_backend else None
# init the default rank if exists
# we need to call this here or NVIDIA flags and other messaging in init will show on all ranks
# this way we only show it on rank 0
if 'LOCAL_RANK' in os.environ:
rank_zero_only.rank = int(os.environ['LOCAL_RANK'])
# benchmarking
self.trainer.benchmark = benchmark
torch.backends.cudnn.benchmark = self.trainer.benchmark
# Transfer params
self.trainer.num_nodes = num_nodes
self.trainer.log_gpu_memory = log_gpu_memory
# sync-bn backend
self.trainer.sync_batchnorm = sync_batchnorm
self.trainer.tpu_cores = device_parser.parse_tpu_cores(tpu_cores)
self.trainer.on_tpu = self.trainer.tpu_cores is not None
self.trainer.tpu_id = self.trainer.tpu_cores[0] if isinstance(self.trainer.tpu_cores, list) else None
if num_processes != 1 and distributed_backend != "ddp_cpu":
rank_zero_warn("num_processes is only used for distributed_backend=\"ddp_cpu\". Ignoring it.")
self.trainer.num_processes = num_processes
# override with environment flag
gpus = os.environ.get('PL_TRAINER_GPUS', gpus)
self.trainer.gpus = gpus
# for gpus allow int, string and gpu list
if auto_select_gpus and isinstance(gpus, int):
self.trainer.gpus = self.trainer.tuner.pick_multiple_gpus(gpus)
self.trainer.data_parallel_device_ids = device_parser.parse_gpu_ids(self.trainer.gpus)
self.trainer.root_gpu = device_parser.determine_root_gpu_device(self.trainer.data_parallel_device_ids)
self.trainer.root_device = torch.device("cpu")
self.trainer.on_gpu = True if (self.trainer.data_parallel_device_ids and torch.cuda.is_available()) else False
# tpu state flags
self.trainer.use_tpu = False
self.trainer.tpu_local_core_rank = None
self.trainer.tpu_global_core_rank = None
# distributed backend choice
self.set_distributed_mode()
# override dist backend when using tpus
if self.trainer.on_tpu:
self.trainer.distributed_backend = "tpu"
self.trainer.use_tpu = True
# init flags for SLURM+DDP to work
self.trainer.world_size = 1
self.trainer.interactive_ddp_procs = []
# link up SLURM
# TODO: this should be taken out of here... but depends too much on DDP
self.trainer.slurm_connector.on_trainer_init(self.trainer.num_nodes)
self.trainer.node_rank = self.determine_ddp_node_rank()
self.trainer.local_rank = self.determine_local_rank()
self.trainer.global_rank = 0
# NVIDIA setup
self.set_nvidia_flags(self.trainer.is_slurm_managing_tasks, self.trainer.data_parallel_device_ids)
self.trainer.on_colab_kaggle = os.getenv('COLAB_GPU') or os.getenv('KAGGLE_URL_BASE')
self.trainer.replace_sampler_ddp = replace_sampler_ddp
def _map_deprecated_dist_backend(self, accelerator, distributed_backend):
if distributed_backend is not None:
rank_zero_warn(DeprecationWarning('distributed_backend has been renamed to accelerator. '
'Deprecated in 1.0.0, will be removed in 1.2.0'))
# temporary mapping until we remove all the distributed_backend references
if accelerator is not None:
self.accelerator = accelerator
if isinstance(accelerator, Accelerator):
self.accelerator.trainer = self
distributed_backend = self.accelerator.nickname
else:
distributed_backend = accelerator
return distributed_backend
def _select_environment(self):
if self.trainer.plugin_connector.cloud_environment:
env = self.trainer.plugin_connector.cloud_environment
elif self.trainer.is_slurm_managing_tasks:
env = SLURMEnvironment()
elif self._is_using_torchelastic():
env = TorchElasticEnvironment()
else:
env = TorchElasticEnvironment()
return env
def _is_using_torchelastic(self):
te_flags_passed = 'WORLD_SIZE' in os.environ and ('GROUP_RANK' in os.environ or 'NODE_RANK' in os.environ)
return te_flags_passed
def select_accelerator(self):
if self.trainer.accelerator_backend is not None:
return self.trainer.accelerator_backend
# ----------------------------------
# Use the user provided accelerator
# ----------------------------------
# use the one the user passed in
if self.accelerator is not None and isinstance(self.accelerator, Accelerator):
self.accelerator.trainer = self.trainer
acc = self.accelerator
return acc
# ----------------------------------
# choose an accelerator for the user
# ----------------------------------
use_slurm_ddp = self.trainer.use_ddp and self.trainer.is_slurm_managing_tasks
# torchelastic or general non_slurm ddp
te_flags_passed = 'WORLD_SIZE' in os.environ and ('GROUP_RANK' in os.environ or 'NODE_RANK' in os.environ)
use_torchelastic_ddp = self.trainer.use_ddp and te_flags_passed
use_ddp_spawn = self.trainer.use_ddp and self.trainer.distributed_backend == "ddp_spawn"
use_ddp_cpu_spawn = self.trainer.use_ddp and self.trainer.distributed_backend == "ddp_cpu"
use_ddp_cpu_torch_elastic = use_ddp_cpu_spawn and self._is_using_torchelastic()
use_ddp_cpu_slurm = use_ddp_cpu_spawn and self.trainer.is_slurm_managing_tasks
# ddp script mode uses the same flags as TE
# TODO: decouple from TE
if os.environ.get('PL_DDP_PID', False):
use_torchelastic_ddp = False
cluster_env = self._select_environment()
# choose the appropriate accelerator backend
if self.trainer.use_ddp2:
accelerator_backend = accelerators.DDP2Accelerator(self.trainer, cluster_env)
elif use_ddp_cpu_slurm:
accelerator_backend = accelerators.DDPCPUSLURMAccelerator(self.trainer, cluster_env)
elif use_slurm_ddp:
accelerator_backend = accelerators.DDPSLURMAccelerator(self.trainer, cluster_env)
elif use_ddp_cpu_torch_elastic:
accelerator_backend = accelerators.DDPCPUTorchElasticAccelerator(self.trainer, cluster_env)
elif use_torchelastic_ddp:
accelerator_backend = accelerators.DDPTorchElasticAccelerator(self.trainer, cluster_env)
elif use_ddp_spawn:
accelerator_backend = accelerators.DDPSpawnAccelerator(
self.trainer,
nprocs=self.trainer.num_processes,
cluster_environment=cluster_env
)
elif use_ddp_cpu_spawn:
accelerator_backend = accelerators.DDPCPUSpawnAccelerator(
self.trainer,
nprocs=self.trainer.num_processes,
cluster_environment=cluster_env
)
elif self.trainer.distributed_backend == "ddp":
accelerator_backend = accelerators.DDPAccelerator(self.trainer, cluster_env)
elif self.trainer.use_dp:
accelerator_backend = accelerators.DataParallelAccelerator(self.trainer, cluster_env)
elif self.trainer.use_horovod:
accelerator_backend = accelerators.HorovodAccelerator(self.trainer, cluster_env)
elif self.trainer.use_single_gpu:
accelerator_backend = accelerators.GPUAccelerator(self.trainer, cluster_env)
elif self.trainer.use_tpu:
accelerator_backend = accelerators.TPUAccelerator(self.trainer, cluster_env)
elif self.trainer.distributed_backend is None:
accelerator_backend = accelerators.CPUAccelerator(self.trainer, cluster_env)
else:
raise MisconfigurationException(
f'Trainer(distributed_backend={self.trainer.distributed_backend} is not a supported backend'
)
return accelerator_backend
def set_distributed_mode(self):
self.trainer.use_dp = False
self.trainer.use_ddp = False
self.trainer.use_ddp2 = False
self.trainer.use_horovod = False
self.trainer.use_single_gpu = False
if self.trainer.distributed_backend is None:
if self.has_horovodrun():
self._set_horovod_backend()
elif self.trainer.num_gpus == 0:
if self.trainer.num_nodes > 1 or self.trainer.num_processes > 1:
self.trainer.use_ddp = True # ddp_cpu
elif self.trainer.num_gpus == 1:
self.trainer.use_single_gpu = True
elif self.trainer.num_gpus > 1:
rank_zero_warn(
'You requested multiple GPUs but did not specify a backend, e.g.'
' Trainer(distributed_backend="dp"|"ddp"|"ddp2").'
' Setting distributed_backend="ddp_spawn" for you.'
)
self.trainer.distributed_backend = "ddp_spawn"
if self.trainer.distributed_backend == "dp":
# do nothing if num_gpus == 0
if self.trainer.num_gpus == 1:
self.trainer.use_single_gpu = True
self.trainer.use_dp = True
elif self.trainer.num_gpus > 1:
self.trainer.use_dp = True
elif self.trainer.distributed_backend in ("ddp", "ddp_spawn"):
if self.trainer.num_gpus == 0:
if self.trainer.num_nodes > 1 or self.trainer.num_processes > 1:
self.trainer.use_ddp = True # ddp_cpu
elif self.trainer.num_gpus == 1:
self.trainer.use_single_gpu = True
self.trainer.use_ddp = True
elif self.trainer.num_gpus > 1:
self.trainer.use_ddp = True
self.trainer.num_processes = self.trainer.num_gpus
elif self.trainer.distributed_backend == "ddp2":
# do nothing if num_gpus == 0
if self.trainer.num_gpus >= 1:
self.trainer.use_ddp2 = True
elif self.trainer.distributed_backend == "ddp_cpu":
if self.trainer.num_gpus > 0:
rank_zero_warn(
'You requested one or more GPUs, but set the backend to `ddp_cpu`. Training will not use GPUs.'
)
self.trainer.use_ddp = True
self.trainer.data_parallel_device_ids = None
self.trainer.on_gpu = False
elif self.trainer.distributed_backend == "horovod":
self._set_horovod_backend()
# throw error to force user ddp or ddp2 choice
if self.trainer.num_nodes > 1 and not (self.trainer.use_ddp2 or self.trainer.use_ddp):
raise MisconfigurationException(
'DataParallel does not support num_nodes > 1. Switching to DistributedDataParallel for you. '
'To silence this warning set distributed_backend=ddp or distributed_backend=ddp2'
)
rank_zero_info(f'GPU available: {torch.cuda.is_available()}, used: {self.trainer.on_gpu}')
num_cores = self.trainer.tpu_cores if self.trainer.tpu_cores is not None else 0
rank_zero_info(f'TPU available: {XLA_AVAILABLE}, using: {num_cores} TPU cores')
if torch.cuda.is_available() and not self.trainer.on_gpu:
rank_zero_warn('GPU available but not used. Set the --gpus flag when calling the script.')
def _set_horovod_backend(self):
self.check_horovod()
self.trainer.use_horovod = True
# Initialize Horovod to get rank / size info
hvd.init()
if self.trainer.on_gpu:
# Horovod assigns one local GPU per process
self.trainer.root_gpu = hvd.local_rank()
def check_horovod(self):
"""Raises a `MisconfigurationException` if the Trainer is not configured correctly for Horovod."""
if not HOROVOD_AVAILABLE:
raise MisconfigurationException(
'Requested `distributed_backend="horovod"`, but Horovod is not installed.'
'Install with \n $HOROVOD_WITH_PYTORCH=1 pip install horovod[pytorch]'
)
if self.trainer.num_gpus > 1 or self.trainer.num_nodes > 1:
raise MisconfigurationException(
'Horovod does not support setting num_nodes / num_gpus explicitly. Use '
'horovodrun / mpirun to configure the number of processes.'
)
@staticmethod
def has_horovodrun():
"""Returns True if running with `horovodrun` using Gloo or OpenMPI."""
return 'OMPI_COMM_WORLD_RANK' in os.environ or 'HOROVOD_RANK' in os.environ
def set_nvidia_flags(self, is_slurm_managing_tasks, data_parallel_device_ids):
if data_parallel_device_ids is None:
return
# set the correct cuda visible devices (using pci order)
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
# when slurm is managing the task it sets the visible devices
if not is_slurm_managing_tasks and 'CUDA_VISIBLE_DEVICES' not in os.environ:
if isinstance(data_parallel_device_ids, int):
id_str = ','.join(str(x) for x in list(range(data_parallel_device_ids)))
os.environ["CUDA_VISIBLE_DEVICES"] = id_str
else:
gpu_str = ','.join([str(x) for x in data_parallel_device_ids])
os.environ["CUDA_VISIBLE_DEVICES"] = gpu_str
# don't make this debug... this is good UX
devices = os.environ["CUDA_VISIBLE_DEVICES"]
log.info(f'LOCAL_RANK: {self.trainer.local_rank} - CUDA_VISIBLE_DEVICES: [{devices}]')
def determine_local_rank(self):
if self.trainer.is_slurm_managing_tasks:
return int(os.environ['SLURM_LOCALID'])
else:
return int(os.environ.get('LOCAL_RANK', 0))
def determine_ddp_node_rank(self):
if self.trainer.is_slurm_managing_tasks:
return int(os.environ['SLURM_NODEID'])
# torchelastic uses the envvar GROUP_RANK, whereas other systems(?) use NODE_RANK.
# otherwise use given node rank or default to node rank 0
env_vars = ['NODE_RANK', 'GROUP_RANK']
node_ids = [(k, os.environ.get(k, None)) for k in env_vars]
node_ids = [(k, v) for k, v in node_ids if v is not None]
if len(node_ids) == 0:
return 0
if len(node_ids) > 1:
log.warning(f"Multiple environment variables ({node_ids}) defined for node rank. Using the first one.")
k, rank = node_ids.pop()
rank_zero_info(f"Using environment variable {k} for node rank ({rank}).")
return int(rank)