lightning/tests/metrics/test_metric_lightning.py

189 lines
5.0 KiB
Python

import torch
from torchmetrics import Metric, MetricCollection
from pytorch_lightning import Trainer
from tests.helpers.boring_model import BoringModel
class SumMetric(Metric):
def __init__(self):
super().__init__()
self.add_state("x", torch.tensor(0.0), dist_reduce_fx="sum")
def update(self, x):
self.x += x
def compute(self):
return self.x
class DiffMetric(Metric):
def __init__(self):
super().__init__()
self.add_state("x", torch.tensor(0.0), dist_reduce_fx="sum")
def update(self, x):
self.x -= x
def compute(self):
return self.x
def test_metric_lightning(tmpdir):
class TestModel(BoringModel):
def __init__(self):
super().__init__()
self.metric = SumMetric()
self.sum = 0.0
def training_step(self, batch, batch_idx):
x = batch
self.metric(x.sum())
self.sum += x.sum()
return self.step(x)
def training_epoch_end(self, outs):
assert torch.allclose(self.sum, self.metric.compute())
self.sum = 0.0
self.metric.reset()
model = TestModel()
model.val_dataloader = None
trainer = Trainer(
default_root_dir=tmpdir,
limit_train_batches=2,
limit_val_batches=2,
max_epochs=2,
log_every_n_steps=1,
weights_summary=None,
)
trainer.fit(model)
def test_metric_lightning_log(tmpdir):
""" Test logging a metric object and that the metric state gets reset after each epoch."""
class TestModel(BoringModel):
def __init__(self):
super().__init__()
self.metric_step = SumMetric()
self.metric_epoch = SumMetric()
self.sum = 0.0
def on_epoch_start(self):
self.sum = 0.0
def training_step(self, batch, batch_idx):
x = batch
self.metric_step(x.sum())
self.sum += x.sum()
self.log("sum_step", self.metric_step, on_epoch=True, on_step=False)
return {'loss': self.step(x), 'data': x}
def training_epoch_end(self, outs):
self.log("sum_epoch", self.metric_epoch(torch.stack([o['data'] for o in outs]).sum()))
model = TestModel()
model.val_dataloader = None
trainer = Trainer(
default_root_dir=tmpdir,
limit_train_batches=2,
limit_val_batches=2,
max_epochs=2,
log_every_n_steps=1,
weights_summary=None,
)
trainer.fit(model)
logged = trainer.logged_metrics
assert torch.allclose(torch.tensor(logged["sum_step"]), model.sum)
assert torch.allclose(torch.tensor(logged["sum_epoch"]), model.sum)
def test_scriptable(tmpdir):
class TestModel(BoringModel):
def __init__(self):
super().__init__()
# the metric is not used in the module's `forward`
# so the module should be exportable to TorchScript
self.metric = SumMetric()
self.sum = 0.0
def training_step(self, batch, batch_idx):
x = batch
self.metric(x.sum())
self.sum += x.sum()
self.log("sum", self.metric, on_epoch=True, on_step=False)
return self.step(x)
model = TestModel()
trainer = Trainer(
default_root_dir=tmpdir,
limit_train_batches=2,
limit_val_batches=2,
max_epochs=1,
log_every_n_steps=1,
weights_summary=None,
logger=False,
checkpoint_callback=False,
)
trainer.fit(model)
rand_input = torch.randn(10, 32)
script_model = model.to_torchscript()
# test that we can still do inference
output = model(rand_input)
script_output = script_model(rand_input)
assert torch.allclose(output, script_output)
def test_metric_collection_lightning_log(tmpdir):
class TestModel(BoringModel):
def __init__(self):
super().__init__()
self.metric = MetricCollection([SumMetric(), DiffMetric()])
self.sum = 0.0
self.diff = 0.0
def training_step(self, batch, batch_idx):
x = batch
metric_vals = self.metric(x.sum())
self.sum += x.sum()
self.diff -= x.sum()
self.log_dict({f'{k}_step': v for k, v in metric_vals.items()})
return self.step(x)
def training_epoch_end(self, outputs):
metric_vals = self.metric.compute()
self.log_dict({f'{k}_epoch': v for k, v in metric_vals.items()})
model = TestModel()
model.val_dataloader = None
trainer = Trainer(
default_root_dir=tmpdir,
limit_train_batches=2,
limit_val_batches=2,
max_epochs=1,
log_every_n_steps=1,
weights_summary=None,
)
trainer.fit(model)
logged = trainer.logged_metrics
assert torch.allclose(torch.tensor(logged["SumMetric_epoch"]), model.sum)
assert torch.allclose(torch.tensor(logged["DiffMetric_epoch"]), model.diff)