lightning/examples/app_dag/app.py

136 lines
4.4 KiB
Python

import os
from importlib import import_module
import numpy as np
import pandas as pd
from sklearn import datasets
from sklearn.metrics import mean_squared_error
import lightning as L
from lightning.app.components import TracerPythonScript
from lightning.app.storage import Payload
from lightning.app.structures import Dict, List
def get_path(path):
return os.path.join(os.path.dirname(__file__), path)
class GetDataWork(L.LightningWork):
"""This component is responsible to download some data and store them with a PayLoad."""
def __init__(self):
super().__init__()
self.df_data = None
self.df_target = None
def run(self):
print("Starting data collection...")
data = datasets.fetch_california_housing(data_home=get_path("data"))
self.df_data = Payload(pd.DataFrame(data["data"], columns=data["feature_names"]))
self.df_target = Payload(pd.DataFrame(data["target"], columns=["MedHouseVal"]))
print("Finished data collection.")
class ModelWork(L.LightningWork):
"""This component is receiving some data and train a sklearn model."""
def __init__(self, model_path: str, parallel: bool):
super().__init__(parallel=parallel)
self.model_path, self.model_name = model_path.split(".")
self.test_rmse = None
def run(self, X_train: Payload, X_test: Payload, y_train: Payload, y_test: Payload):
print(f"Starting training and evaluating {self.model_name}...")
module = import_module(f"sklearn.{self.model_path}")
model = getattr(module, self.model_name)()
model.fit(X_train.value, y_train.value.ravel())
y_test_prediction = model.predict(X_test.value)
self.test_rmse = np.sqrt(mean_squared_error(y_test.value, y_test_prediction))
print(f"Finished training and evaluating {self.model_name}.")
class DAG(L.LightningFlow):
"""This component is a DAG."""
def __init__(self, models_paths: list):
super().__init__()
# Step 1: Create a work to get the data.
self.data_collector = GetDataWork()
# Step 2: Create a tracer component. This is used to execute python script
# and collect any outputs from its globals as Payloads.
self.processing = TracerPythonScript(
get_path("processing.py"),
outputs=["X_train", "X_test", "y_train", "y_test"],
)
# Step 3: Create the work to train the models_paths in parallel.
self.dict = Dict(
**{model_path.split(".")[-1]: ModelWork(model_path, parallel=True) for model_path in models_paths}
)
# Step 4: Some element to track components progress.
self.has_completed = False
self.metrics = {}
def run(self):
# Step 1 and 2: Download and process the data.
self.data_collector.run()
self.processing.run(
df_data=self.data_collector.df_data,
df_target=self.data_collector.df_target,
)
# Step 3: Launch n models training in parallel.
for model, work in self.dict.items():
work.run(
X_train=self.processing.X_train,
X_test=self.processing.X_test,
y_train=self.processing.y_train,
y_test=self.processing.y_test,
)
if work.test_rmse: # Use the state to control when to collect and stop.
self.metrics[model] = work.test_rmse
work.stop() # Stop the model work to reduce cost
# Step 4: Print the score of each model when they are all finished.
if len(self.metrics) == len(self.dict):
print(self.metrics)
self.has_completed = True
class ScheduledDAG(L.LightningFlow):
def __init__(self, dag_cls, **dag_kwargs):
super().__init__()
self.dags = List()
self._dag_cls = dag_cls
self.dag_kwargs = dag_kwargs
def run(self):
"""Example of scheduling an infinite number of DAG runs continuously."""
# Step 1: Every minute, create and launch a new DAG.
if self.schedule("* * * * *"):
print("Launching a new DAG")
self.dags.append(self._dag_cls(**self.dag_kwargs))
for dag in self.dags:
if not dag.has_completed:
dag.run()
app = L.LightningApp(
ScheduledDAG(
DAG,
models_paths=[
"svm.SVR",
"linear_model.LinearRegression",
"tree.DecisionTreeRegressor",
],
),
)