281 lines
8.1 KiB
Python
281 lines
8.1 KiB
Python
import os
|
|
from unittest import mock
|
|
|
|
import pytest
|
|
import torch
|
|
|
|
from pytorch_lightning import Trainer
|
|
from pytorch_lightning.callbacks import Callback
|
|
from pytorch_lightning.plugins import DDPShardedPlugin, DDPSpawnShardedPlugin
|
|
from pytorch_lightning.utilities.exceptions import MisconfigurationException
|
|
from tests.helpers.boring_model import BoringModel
|
|
from tests.helpers.runif import RunIf
|
|
|
|
|
|
@pytest.mark.parametrize("clip_val", [0, 10])
|
|
@RunIf(min_gpus=1, skip_windows=True, amp_native=True, fairscale=True)
|
|
@mock.patch('fairscale.optim.oss.OSS.clip_grad_norm')
|
|
def test_ddp_sharded_precision_16_clip_gradients(mock_oss_clip_grad_norm, clip_val, tmpdir):
|
|
"""
|
|
Ensure that clip gradients is only called if the value is greater than 0.
|
|
"""
|
|
model = BoringModel()
|
|
trainer = Trainer(accelerator='ddp_sharded', gpus=1, precision=16, fast_dev_run=True, gradient_clip_val=clip_val)
|
|
trainer.fit(model)
|
|
if clip_val > 0:
|
|
mock_oss_clip_grad_norm.assert_called()
|
|
else:
|
|
mock_oss_clip_grad_norm.assert_not_called()
|
|
|
|
|
|
@RunIf(fairscale=True)
|
|
@pytest.mark.parametrize(["accelerator"], [("ddp_sharded", ), ("ddp_sharded_spawn", )])
|
|
def test_sharded_ddp_choice(tmpdir, accelerator):
|
|
"""
|
|
Test to ensure that plugin is correctly chosen
|
|
"""
|
|
|
|
class CB(Callback):
|
|
|
|
def on_fit_start(self, trainer, pl_module):
|
|
if accelerator == 'ddp_sharded':
|
|
assert isinstance(trainer.accelerator.training_type_plugin, DDPShardedPlugin)
|
|
elif accelerator == 'ddp_sharded_spawn':
|
|
assert isinstance(trainer.accelerator.training_type_plugin, DDPSpawnShardedPlugin)
|
|
raise SystemExit()
|
|
|
|
model = BoringModel()
|
|
trainer = Trainer(
|
|
fast_dev_run=True,
|
|
accelerator=accelerator,
|
|
callbacks=[CB()],
|
|
)
|
|
|
|
with pytest.raises(SystemExit):
|
|
trainer.fit(model)
|
|
|
|
|
|
@RunIf(amp_apex=True, fairscale=True)
|
|
def test_invalid_apex_sharded(tmpdir):
|
|
"""
|
|
Test to ensure that we raise an error when we try to use apex and sharded
|
|
"""
|
|
|
|
model = BoringModel()
|
|
with pytest.raises(MisconfigurationException, match='Sharded Plugin is not supported with Apex AMP'):
|
|
trainer = Trainer(
|
|
fast_dev_run=True,
|
|
accelerator='ddp_sharded_spawn',
|
|
precision=16,
|
|
amp_backend='apex',
|
|
)
|
|
|
|
trainer.fit(model)
|
|
|
|
|
|
@RunIf(min_gpus=2, amp_native=True, fairscale=True)
|
|
@pytest.mark.parametrize(["accelerator"], [("ddp_sharded", ), ("ddp_sharded_spawn", )])
|
|
def test_ddp_choice_sharded_amp(tmpdir, accelerator):
|
|
"""
|
|
Test to ensure that plugin native amp plugin is correctly chosen when using sharded
|
|
"""
|
|
|
|
class CB(Callback):
|
|
|
|
def on_fit_start(self, trainer, pl_module):
|
|
if accelerator == 'ddp_sharded':
|
|
assert isinstance(trainer.accelerator.training_type_plugin, DDPShardedPlugin)
|
|
elif accelerator == 'ddp_sharded_spawn':
|
|
assert isinstance(trainer.accelerator.training_type_plugin, DDPSpawnShardedPlugin)
|
|
raise SystemExit()
|
|
|
|
model = BoringModel()
|
|
trainer = Trainer(
|
|
fast_dev_run=True,
|
|
gpus=1,
|
|
precision=16,
|
|
accelerator=accelerator,
|
|
callbacks=[CB()],
|
|
)
|
|
|
|
with pytest.raises(SystemExit):
|
|
trainer.fit(model)
|
|
|
|
|
|
@RunIf(skip_windows=True, fairscale=True)
|
|
def test_ddp_sharded_plugin_checkpoint_cpu(tmpdir):
|
|
"""
|
|
Test to ensure that checkpoint is saved correctly
|
|
"""
|
|
model = BoringModel()
|
|
trainer = Trainer(
|
|
accelerator='ddp_sharded_spawn',
|
|
num_processes=2,
|
|
fast_dev_run=True,
|
|
)
|
|
|
|
trainer.fit(model)
|
|
|
|
checkpoint_path = os.path.join(tmpdir, 'model.pt')
|
|
trainer.save_checkpoint(checkpoint_path)
|
|
saved_model = BoringModel.load_from_checkpoint(checkpoint_path)
|
|
|
|
# Assert model parameters are identical after loading
|
|
for ddp_param, shard_param in zip(model.parameters(), saved_model.parameters()):
|
|
assert torch.equal(ddp_param.to("cpu"), shard_param)
|
|
|
|
|
|
@RunIf(min_gpus=2, skip_windows=True, fairscale=True)
|
|
def test_ddp_sharded_plugin_checkpoint_multi_gpu(tmpdir):
|
|
"""
|
|
Test to ensure that checkpoint is saved correctly when using multiple GPUs
|
|
"""
|
|
model = BoringModel()
|
|
trainer = Trainer(
|
|
gpus=2,
|
|
accelerator='ddp_sharded_spawn',
|
|
fast_dev_run=True,
|
|
)
|
|
|
|
trainer.fit(model)
|
|
|
|
checkpoint_path = os.path.join(tmpdir, 'model.pt')
|
|
trainer.save_checkpoint(checkpoint_path)
|
|
saved_model = BoringModel.load_from_checkpoint(checkpoint_path)
|
|
|
|
# Assert model parameters are identical after loading
|
|
for ddp_param, shard_param in zip(model.parameters(), saved_model.parameters()):
|
|
assert torch.equal(ddp_param.to("cpu"), shard_param)
|
|
|
|
|
|
@RunIf(min_gpus=2, skip_windows=True, fairscale=True)
|
|
def test_ddp_sharded_plugin_finetune(tmpdir):
|
|
"""
|
|
Test to ensure that we can save and restart training (simulate fine-tuning)
|
|
"""
|
|
model = BoringModel()
|
|
trainer = Trainer(
|
|
gpus=2,
|
|
accelerator='ddp_sharded_spawn',
|
|
fast_dev_run=True,
|
|
)
|
|
trainer.fit(model)
|
|
|
|
checkpoint_path = os.path.join(tmpdir, 'model.pt')
|
|
trainer.save_checkpoint(checkpoint_path)
|
|
saved_model = BoringModel.load_from_checkpoint(checkpoint_path)
|
|
|
|
trainer = Trainer(fast_dev_run=True, )
|
|
trainer.fit(saved_model)
|
|
|
|
|
|
@RunIf(skip_windows=True, fairscale=True)
|
|
def test_ddp_sharded_plugin_resume_from_checkpoint(tmpdir):
|
|
"""
|
|
Test to ensure that resuming from checkpoint works
|
|
"""
|
|
model = BoringModel()
|
|
trainer = Trainer(
|
|
accelerator='ddp_sharded_spawn',
|
|
num_processes=2,
|
|
fast_dev_run=True,
|
|
)
|
|
|
|
trainer.fit(model)
|
|
|
|
checkpoint_path = os.path.join(tmpdir, 'model.pt')
|
|
trainer.save_checkpoint(checkpoint_path)
|
|
|
|
model = BoringModel()
|
|
|
|
trainer = Trainer(
|
|
accelerator='ddp_sharded_spawn',
|
|
num_processes=2,
|
|
fast_dev_run=True,
|
|
resume_from_checkpoint=checkpoint_path,
|
|
)
|
|
|
|
trainer.fit(model)
|
|
|
|
|
|
@pytest.mark.skip(reason="Not a critical test, skip till drone CI performance improves.") # todo
|
|
@pytest.mark.skip(reason="Currently unsupported restarting training on different number of devices.")
|
|
@RunIf(min_gpus=2, skip_windows=True, fairscale=True)
|
|
def test_ddp_sharded_plugin_resume_from_checkpoint_downsize_gpus(tmpdir):
|
|
"""
|
|
Test to ensure that resuming from checkpoint works when downsizing number of GPUS
|
|
"""
|
|
model = BoringModel()
|
|
trainer = Trainer(
|
|
accelerator='ddp_sharded_spawn',
|
|
fast_dev_run=True,
|
|
gpus=2,
|
|
)
|
|
|
|
trainer.fit(model)
|
|
|
|
checkpoint_path = os.path.join(tmpdir, 'model.pt')
|
|
trainer.save_checkpoint(checkpoint_path)
|
|
|
|
model = BoringModel()
|
|
|
|
trainer = Trainer(
|
|
accelerator='ddp_sharded_spawn',
|
|
fast_dev_run=True,
|
|
gpus=1,
|
|
resume_from_checkpoint=checkpoint_path,
|
|
)
|
|
|
|
trainer.fit(model)
|
|
|
|
|
|
@RunIf(min_gpus=1, skip_windows=True, fairscale=True)
|
|
def test_ddp_sharded_plugin_resume_from_checkpoint_gpu_to_cpu(tmpdir):
|
|
"""
|
|
Test to ensure that resuming from checkpoint works when going from GPUs- > CPU
|
|
"""
|
|
model = BoringModel()
|
|
trainer = Trainer(
|
|
accelerator='ddp_sharded_spawn',
|
|
gpus=1,
|
|
fast_dev_run=True,
|
|
)
|
|
|
|
trainer.fit(model)
|
|
|
|
checkpoint_path = os.path.join(tmpdir, 'model.pt')
|
|
trainer.save_checkpoint(checkpoint_path)
|
|
|
|
model = BoringModel()
|
|
|
|
trainer = Trainer(
|
|
accelerator='ddp_sharded_spawn',
|
|
num_processes=2,
|
|
fast_dev_run=True,
|
|
resume_from_checkpoint=checkpoint_path,
|
|
)
|
|
|
|
trainer.fit(model)
|
|
|
|
|
|
@RunIf(skip_windows=True, special=True, fairscale=True)
|
|
@pytest.mark.parametrize(
|
|
"trainer_kwargs", (
|
|
dict(num_processes=2),
|
|
pytest.param(dict(gpus=2), marks=RunIf(min_gpus=2)),
|
|
)
|
|
)
|
|
def test_ddp_sharded_plugin_test_multigpu(tmpdir, trainer_kwargs):
|
|
"""
|
|
Test to ensure we can use validate and test without fit
|
|
"""
|
|
model = BoringModel()
|
|
trainer = Trainer(
|
|
accelerator='ddp_sharded_spawn',
|
|
fast_dev_run=True,
|
|
**trainer_kwargs,
|
|
)
|
|
|
|
trainer.validate(model)
|
|
trainer.test(model)
|