186 lines
6.2 KiB
Python
186 lines
6.2 KiB
Python
# Copyright The PyTorch Lightning team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import os
|
|
from unittest import mock
|
|
|
|
import pytest
|
|
import torch
|
|
import torch.distributed as torch_distrib
|
|
from torch import nn
|
|
|
|
from pytorch_lightning import LightningModule, Trainer
|
|
from pytorch_lightning.plugins.training_type.rpc_sequential import RPCSequentialPlugin
|
|
from pytorch_lightning.utilities.exceptions import MisconfigurationException
|
|
from tests.helpers.boring_model import RandomDataset
|
|
from tests.helpers.runif import RunIf
|
|
|
|
|
|
@mock.patch.dict(os.environ, {"PL_DEV_DEBUG": "1"})
|
|
@RunIf(min_gpus=2, special=True, fairscale_pipe=True)
|
|
def test_rpc_sequential_plugin_manual(tmpdir):
|
|
model = SequentialModelRPCManual()
|
|
trainer = Trainer(
|
|
max_epochs=2,
|
|
limit_train_batches=2,
|
|
limit_val_batches=2,
|
|
limit_test_batches=2,
|
|
gpus=2,
|
|
distributed_backend="ddp",
|
|
plugins=[RPCSequentialPlugin(balance=[2, 1], rpc_timeout_sec=5 * 60)],
|
|
)
|
|
|
|
trainer.fit(model)
|
|
|
|
if torch_distrib.is_initialized() and torch_distrib.get_rank() == 0:
|
|
assert len(trainer.dev_debugger.pbar_added_metrics) > 0
|
|
|
|
if trainer.accelerator.rpc_enabled:
|
|
# Called at the end of trainer to ensure all processes are killed
|
|
trainer.accelerator.training_type_plugin.exit_rpc_process()
|
|
|
|
|
|
@RunIf(min_gpus=2, special=True, fairscale_pipe=True)
|
|
def test_rpc_sequential_plugin_manual_amp(tmpdir):
|
|
model = SequentialModelRPCManual()
|
|
trainer = Trainer(
|
|
max_epochs=2,
|
|
limit_train_batches=2,
|
|
limit_val_batches=2,
|
|
limit_test_batches=2,
|
|
gpus=2,
|
|
precision=16,
|
|
amp_backend="native",
|
|
distributed_backend="ddp",
|
|
plugins=[RPCSequentialPlugin(balance=[2, 1])],
|
|
)
|
|
with pytest.raises(
|
|
MisconfigurationException,
|
|
match='`RPCSequentialPlugin` is currently not supported in Automatic Mixed Precision'
|
|
):
|
|
trainer.fit(model)
|
|
|
|
|
|
@mock.patch.dict(os.environ, {"PL_DEV_DEBUG": "1"})
|
|
@RunIf(min_gpus=2, special=True, fairscale_pipe=True)
|
|
def test_rpc_sequential_plugin_automatic(tmpdir):
|
|
model = SequentialModelRPCAutomatic()
|
|
trainer = Trainer(
|
|
max_epochs=2,
|
|
limit_train_batches=2,
|
|
limit_val_batches=2,
|
|
limit_test_batches=2,
|
|
gpus=2,
|
|
distributed_backend="ddp",
|
|
plugins=[RPCSequentialPlugin(balance=[2, 1])],
|
|
)
|
|
|
|
trainer.fit(model)
|
|
|
|
if torch_distrib.is_initialized() and torch_distrib.get_rank() == 0:
|
|
assert len(trainer.dev_debugger.pbar_added_metrics) > 0
|
|
|
|
if trainer.accelerator.rpc_enabled:
|
|
# Called at the end of trainer to ensure all processes are killed
|
|
trainer.accelerator.training_type_plugin.exit_rpc_process()
|
|
|
|
|
|
@RunIf(min_gpus=2, special=True, fairscale_pipe=True)
|
|
def test_rpc_sequential_plugin_with_wrong_balance(tmpdir):
|
|
model = SequentialModelRPCAutomatic()
|
|
trainer = Trainer(
|
|
max_epochs=2,
|
|
limit_train_batches=2,
|
|
limit_val_batches=2,
|
|
limit_test_batches=2,
|
|
gpus=2,
|
|
distributed_backend="ddp",
|
|
plugins=[RPCSequentialPlugin(balance=[2, 2])],
|
|
)
|
|
|
|
with pytest.raises(
|
|
MisconfigurationException, match="The provided balance sum: 4 does not match your Sequential length: 3"
|
|
):
|
|
trainer.fit(model)
|
|
|
|
if trainer.accelerator.rpc_enabled:
|
|
# Called at the end of trainer to ensure all processes are killed
|
|
trainer.accelerator.training_type_plugin.exit_rpc_process()
|
|
|
|
|
|
class SequentialModelRPCManual(LightningModule):
|
|
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.sequential_module = nn.Sequential(torch.nn.Linear(32, 32), nn.ReLU(), nn.Linear(32, 2))
|
|
self.automatic_optimization = False
|
|
|
|
def forward(self, x):
|
|
return self.sequential_module(x)
|
|
|
|
def loss(self, prediction):
|
|
# An arbitrary loss to have a loss that updates the model weights during `Trainer.fit` calls
|
|
return torch.nn.functional.mse_loss(prediction, torch.ones_like(prediction))
|
|
|
|
def step(self, x):
|
|
x = self(x)
|
|
out = torch.nn.functional.mse_loss(x, torch.ones_like(x))
|
|
return out
|
|
|
|
def training_step(self, batch, batch_idx):
|
|
opt = self.optimizers()
|
|
output = self.sequential_module(batch)
|
|
loss = self.loss(output)
|
|
self.log("train_loss", loss, on_epoch=True, prog_bar=True)
|
|
self.manual_backward(loss, opt)
|
|
assert torch.stack([torch.abs(p.grad).sum() for p in self.parameters()]).sum() > 0
|
|
opt.step()
|
|
opt.zero_grad()
|
|
assert torch.stack([torch.abs(p.grad).sum() for p in self.parameters()]).sum() == 0
|
|
|
|
def validation_step(self, batch, batch_idx):
|
|
output = self.sequential_module(batch)
|
|
loss = self.loss(output)
|
|
return loss
|
|
|
|
def test_step(self, batch, batch_idx):
|
|
output = self.sequential_module(batch)
|
|
return self.loss(batch, output)
|
|
|
|
def configure_optimizers(self):
|
|
optimizer = torch.optim.SGD(self.parameters(), lr=0.1)
|
|
lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=1)
|
|
return [optimizer], [lr_scheduler]
|
|
|
|
def train_dataloader(self):
|
|
return torch.utils.data.DataLoader(RandomDataset(32, 64))
|
|
|
|
def val_dataloader(self):
|
|
return torch.utils.data.DataLoader(RandomDataset(32, 64))
|
|
|
|
def test_dataloader(self):
|
|
return torch.utils.data.DataLoader(RandomDataset(32, 64))
|
|
|
|
|
|
class SequentialModelRPCAutomatic(SequentialModelRPCManual):
|
|
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.automatic_optimization = True
|
|
|
|
def training_step(self, batch, batch_idx):
|
|
output = self.sequential_module(batch)
|
|
loss = self.loss(output)
|
|
self.log("train_loss", loss, on_epoch=True, prog_bar=True)
|
|
return loss
|