lightning/tests/checkpointing/test_torch_saving.py

77 lines
2.2 KiB
Python

# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import torch
from pytorch_lightning import Trainer
from tests.helpers import BoringModel
from tests.helpers.runif import RunIf
def test_model_torch_save(tmpdir):
"""Test to ensure torch save does not fail for model and trainer."""
model = BoringModel()
num_epochs = 1
trainer = Trainer(
default_root_dir=tmpdir,
max_epochs=num_epochs,
)
temp_path = os.path.join(tmpdir, 'temp.pt')
trainer.fit(model)
# Ensure these do not fail
torch.save(trainer.model, temp_path)
torch.save(trainer, temp_path)
trainer = torch.load(temp_path)
@RunIf(skip_windows=True)
def test_model_torch_save_ddp_cpu(tmpdir):
"""Test to ensure torch save does not fail for model and trainer using cpu ddp."""
model = BoringModel()
num_epochs = 1
trainer = Trainer(
default_root_dir=tmpdir,
max_epochs=num_epochs,
accelerator="ddp_cpu",
num_processes=2,
logger=False,
)
temp_path = os.path.join(tmpdir, 'temp.pt')
trainer.fit(model)
# Ensure these do not fail
torch.save(trainer.model, temp_path)
torch.save(trainer, temp_path)
@RunIf(min_gpus=2)
def test_model_torch_save_ddp_cuda(tmpdir):
"""Test to ensure torch save does not fail for model and trainer using gpu ddp."""
model = BoringModel()
num_epochs = 1
trainer = Trainer(
default_root_dir=tmpdir,
max_epochs=num_epochs,
accelerator="ddp_spawn",
gpus=2,
)
temp_path = os.path.join(tmpdir, 'temp.pt')
trainer.fit(model)
# Ensure these do not fail
torch.save(trainer.model, temp_path)
torch.save(trainer, temp_path)