lightning/pytorch_lightning/metrics/functional/nlp.py

117 lines
3.9 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# referenced from
# Library Name: torchtext
# Authors: torchtext authors and @sluks
# Date: 2020-07-18
# Link: https://pytorch.org/text/_modules/torchtext/data/metrics.html#bleu_score
from collections import Counter
from typing import List, Sequence
import torch
def _count_ngram(ngram_input_list: List[str], n_gram: int) -> Counter:
"""
Counting how many times each word appears in a given text with ngram
Args:
ngram_input_list: A list of translated text or reference texts
n_gram: gram value ranged 1 to 4
Return:
ngram_counter: a collections.Counter object of ngram
"""
ngram_counter = Counter()
for i in range(1, n_gram + 1):
for j in range(len(ngram_input_list) - i + 1):
ngram_key = tuple(ngram_input_list[j:(i + j)])
ngram_counter[ngram_key] += 1
return ngram_counter
def bleu_score(
translate_corpus: Sequence[str],
reference_corpus: Sequence[str],
n_gram: int = 4,
smooth: bool = False
) -> torch.Tensor:
"""
Calculate BLEU score of machine translated text with one or more references
Args:
translate_corpus: An iterable of machine translated corpus
reference_corpus: An iterable of iterables of reference corpus
n_gram: Gram value ranged from 1 to 4 (Default 4)
smooth: Whether or not to apply smoothing Lin et al. 2004
Return:
Tensor with BLEU Score
Example:
>>> translate_corpus = ['the cat is on the mat'.split()]
>>> reference_corpus = [['there is a cat on the mat'.split(), 'a cat is on the mat'.split()]]
>>> bleu_score(translate_corpus, reference_corpus)
tensor(0.7598)
"""
assert len(translate_corpus) == len(reference_corpus)
numerator = torch.zeros(n_gram)
denominator = torch.zeros(n_gram)
precision_scores = torch.zeros(n_gram)
c = 0.0
r = 0.0
for (translation, references) in zip(translate_corpus, reference_corpus):
c += len(translation)
ref_len_list = [len(ref) for ref in references]
ref_len_diff = [abs(len(translation) - x) for x in ref_len_list]
r += ref_len_list[ref_len_diff.index(min(ref_len_diff))]
translation_counter = _count_ngram(translation, n_gram)
reference_counter = Counter()
for ref in references:
reference_counter |= _count_ngram(ref, n_gram)
ngram_counter_clip = translation_counter & reference_counter
for counter_clip in ngram_counter_clip:
numerator[len(counter_clip) - 1] += ngram_counter_clip[counter_clip]
for counter in translation_counter:
denominator[len(counter) - 1] += translation_counter[counter]
trans_len = torch.tensor(c)
ref_len = torch.tensor(r)
if min(numerator) == 0.0:
return torch.tensor(0.0)
if smooth:
precision_scores = torch.add(numerator, torch.ones(n_gram)) / torch.add(denominator, torch.ones(n_gram))
else:
precision_scores = numerator / denominator
log_precision_scores = torch.tensor([1.0 / n_gram] * n_gram) * torch.log(precision_scores)
geometric_mean = torch.exp(torch.sum(log_precision_scores))
brevity_penalty = torch.tensor(1.0) if c > r else torch.exp(1 - (ref_len / trans_len))
bleu = brevity_penalty * geometric_mean
return bleu