238 lines
9.0 KiB
Python
238 lines
9.0 KiB
Python
# Copyright The PyTorch Lightning team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import math
|
|
import functools
|
|
from abc import ABC, abstractmethod
|
|
from typing import Any, Callable, Optional, Union
|
|
from collections.abc import Mapping, Sequence
|
|
from collections import namedtuple
|
|
|
|
import torch
|
|
from torch import nn
|
|
from pytorch_lightning.metrics.metric import Metric
|
|
from pytorch_lightning.metrics.utils import to_onehot, METRIC_EPS
|
|
|
|
|
|
def _input_format(num_classes: int, preds: torch.Tensor, target: torch.Tensor, threshold=0.5, multilabel=False):
|
|
if not (len(preds.shape) == len(target.shape) or len(preds.shape) == len(target.shape) + 1):
|
|
raise ValueError(
|
|
"preds and target must have same number of dimensions, or one additional dimension for preds"
|
|
)
|
|
|
|
if len(preds.shape) == len(target.shape) + 1:
|
|
# multi class probabilites
|
|
preds = torch.argmax(preds, dim=1)
|
|
|
|
if len(preds.shape) == len(target.shape) and preds.dtype == torch.long and num_classes > 1 and not multilabel:
|
|
# multi-class
|
|
preds = to_onehot(preds, num_classes=num_classes)
|
|
target = to_onehot(target, num_classes=num_classes)
|
|
|
|
elif len(preds.shape) == len(target.shape) and preds.dtype == torch.float:
|
|
# binary or multilabel probablities
|
|
preds = (preds >= threshold).long()
|
|
|
|
# transpose class as first dim and reshape
|
|
if len(preds.shape) > 1:
|
|
preds = preds.transpose(1, 0)
|
|
target = target.transpose(1, 0)
|
|
|
|
return preds.reshape(num_classes, -1), target.reshape(num_classes, -1)
|
|
|
|
|
|
class Precision(Metric):
|
|
"""
|
|
Computes the precision metric.
|
|
|
|
Works with binary, multiclass, and multilabel data.
|
|
Accepts logits from a model output or integer class values in prediction.
|
|
Works with multi-dimensional preds and target.
|
|
|
|
Forward accepts
|
|
|
|
- ``preds`` (float or long tensor): ``(N, ...)`` or ``(N, C, ...)`` where C is the number of classes
|
|
- ``target`` (long tensor): ``(N, ...)``
|
|
|
|
If preds and target are the same shape and preds is a float tensor, we use the ``self.threshold`` argument.
|
|
This is the case for binary and multi-label logits.
|
|
|
|
If preds has an extra dimension as in the case of multi-class scores we perform an argmax on ``dim=1``.
|
|
|
|
Args:
|
|
num_classes: Number of classes in the dataset.
|
|
beta: Beta coefficient in the F measure.
|
|
threshold:
|
|
Threshold value for binary or multi-label logits. default: 0.5
|
|
|
|
average:
|
|
* `'micro'` computes metric globally
|
|
* `'macro'` computes metric for each class and then takes the mean
|
|
|
|
multilabel: If predictions are from multilabel classification.
|
|
compute_on_step:
|
|
Forward only calls ``update()`` and return None if this is set to False. default: True
|
|
dist_sync_on_step:
|
|
Synchronize metric state across processes at each ``forward()``
|
|
before returning the value at the step. default: False
|
|
process_group:
|
|
Specify the process group on which synchronization is called. default: None (which selects the entire world)
|
|
|
|
Example:
|
|
|
|
>>> from pytorch_lightning.metrics import Precision
|
|
>>> target = torch.tensor([0, 1, 2, 0, 1, 2])
|
|
>>> preds = torch.tensor([0, 2, 1, 0, 0, 1])
|
|
>>> precision = Precision(num_classes=3)
|
|
>>> precision(preds, target)
|
|
tensor(0.3333)
|
|
|
|
"""
|
|
def __init__(
|
|
self,
|
|
num_classes: int = 1,
|
|
threshold: float = 0.5,
|
|
average: str = 'micro',
|
|
multilabel: bool = False,
|
|
compute_on_step: bool = True,
|
|
dist_sync_on_step: bool = False,
|
|
process_group: Optional[Any] = None,
|
|
):
|
|
super().__init__(
|
|
compute_on_step=compute_on_step,
|
|
dist_sync_on_step=dist_sync_on_step,
|
|
process_group=process_group,
|
|
)
|
|
|
|
self.num_classes = num_classes
|
|
self.threshold = threshold
|
|
self.average = average
|
|
self.multilabel = multilabel
|
|
|
|
assert self.average in ('micro', 'macro'), \
|
|
"average passed to the function must be either `micro` or `macro`"
|
|
|
|
self.add_state("true_positives", default=torch.zeros(num_classes), dist_reduce_fx="sum")
|
|
self.add_state("predicted_positives", default=torch.zeros(num_classes), dist_reduce_fx="sum")
|
|
|
|
def update(self, preds: torch.Tensor, target: torch.Tensor):
|
|
preds, target = _input_format(self.num_classes, preds, target, self.threshold, self.multilabel)
|
|
|
|
# multiply because we are counting (1, 1) pair for true positives
|
|
self.true_positives += torch.sum(preds * target, dim=1)
|
|
self.predicted_positives += torch.sum(preds, dim=1)
|
|
|
|
def compute(self):
|
|
if self.average == 'micro':
|
|
return self.true_positives.sum().float() / (self.predicted_positives.sum() + METRIC_EPS)
|
|
elif self.average == 'macro':
|
|
return (self.true_positives.float() / (self.predicted_positives + METRIC_EPS)).mean()
|
|
|
|
|
|
class Recall(Metric):
|
|
"""
|
|
Computes the recall metric.
|
|
|
|
Works with binary, multiclass, and multilabel data.
|
|
Accepts logits from a model output or integer class values in prediction.
|
|
Works with multi-dimensional preds and target.
|
|
|
|
Forward accepts
|
|
|
|
- ``preds`` (float or long tensor): ``(N, ...)`` or ``(N, C, ...)`` where C is the number of classes
|
|
- ``target`` (long tensor): ``(N, ...)``
|
|
|
|
If preds and target are the same shape and preds is a float tensor, we use the ``self.threshold`` argument.
|
|
This is the case for binary and multi-label logits.
|
|
|
|
If preds has an extra dimension as in the case of multi-class scores we perform an argmax on ``dim=1``.
|
|
|
|
Args:
|
|
num_classes: Number of classes in the dataset.
|
|
beta: Beta coefficient in the F measure.
|
|
threshold:
|
|
Threshold value for binary or multi-label logits. default: 0.5
|
|
|
|
average:
|
|
* `'micro'` computes metric globally
|
|
* `'macro'` computes metric for each class and then takes the mean
|
|
|
|
multilabel: If predictions are from multilabel classification.
|
|
compute_on_step:
|
|
Forward only calls ``update()`` and return None if this is set to False. default: True
|
|
dist_sync_on_step:
|
|
Synchronize metric state across processes at each ``forward()``
|
|
before returning the value at the step. default: False
|
|
process_group:
|
|
Specify the process group on which synchronization is called. default: None (which selects the entire world)
|
|
|
|
Example:
|
|
|
|
>>> from pytorch_lightning.metrics import Recall
|
|
>>> target = torch.tensor([0, 1, 2, 0, 1, 2])
|
|
>>> preds = torch.tensor([0, 2, 1, 0, 0, 1])
|
|
>>> recall = Recall(num_classes=3)
|
|
>>> recall(preds, target)
|
|
tensor(0.3333)
|
|
|
|
"""
|
|
def __init__(
|
|
self,
|
|
num_classes: int = 1,
|
|
threshold: float = 0.5,
|
|
average: str = 'micro',
|
|
multilabel: bool = False,
|
|
compute_on_step: bool = True,
|
|
dist_sync_on_step: bool = False,
|
|
process_group: Optional[Any] = None,
|
|
):
|
|
super().__init__(
|
|
compute_on_step=compute_on_step,
|
|
dist_sync_on_step=dist_sync_on_step,
|
|
process_group=process_group,
|
|
)
|
|
|
|
self.num_classes = num_classes
|
|
self.threshold = threshold
|
|
self.average = average
|
|
self.multilabel = multilabel
|
|
|
|
assert self.average in ('micro', 'macro'), \
|
|
"average passed to the function must be either `micro` or `macro`"
|
|
|
|
self.add_state("true_positives", default=torch.zeros(num_classes), dist_reduce_fx="sum")
|
|
self.add_state("actual_positives", default=torch.zeros(num_classes), dist_reduce_fx="sum")
|
|
|
|
def update(self, preds: torch.Tensor, target: torch.Tensor):
|
|
"""
|
|
Update state with predictions and targets.
|
|
|
|
Args:
|
|
preds: Predictions from model
|
|
target: Ground truth values
|
|
"""
|
|
preds, target = _input_format(self.num_classes, preds, target, self.threshold, self.multilabel)
|
|
|
|
# multiply because we are counting (1, 1) pair for true positives
|
|
self.true_positives += torch.sum(preds * target, dim=1)
|
|
self.actual_positives += torch.sum(target, dim=1)
|
|
|
|
def compute(self):
|
|
"""
|
|
Computes accuracy over state.
|
|
"""
|
|
if self.average == 'micro':
|
|
return self.true_positives.sum().float() / (self.actual_positives.sum() + METRIC_EPS)
|
|
elif self.average == 'macro':
|
|
return (self.true_positives.float() / (self.actual_positives + METRIC_EPS)).mean()
|