lightning/pytorch_lightning/accelerators/dp_accelerator.py

188 lines
6.4 KiB
Python

# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Union
import torch
from torch import optim
from pytorch_lightning.accelerators.accelerator import Accelerator
from pytorch_lightning.core.lightning import LightningModule
from pytorch_lightning.core.step_result import Result
from pytorch_lightning.distributed import LightningDistributed
from pytorch_lightning.overrides.data_parallel import LightningDataParallel
from pytorch_lightning.utilities import AMPType
from pytorch_lightning.utilities.exceptions import MisconfigurationException
class DataParallelAccelerator(Accelerator):
def __init__(self, trainer, cluster_environment=None):
"""
Runs training using DP via manual start (not HPC cluster)
Example::
# default
trainer = Trainer(accelerator=DataParallelAccelerator())
"""
super().__init__(trainer, cluster_environment)
self.model_autocast_original_forward = None
self.dist = LightningDistributed()
self.nickname = 'dp'
def setup(self, model):
# call setup after the ddp process has connected
self.trainer.call_setup_hook(model)
# put model on correct device
model.cuda(self.trainer.root_gpu)
# CHOOSE OPTIMIZER
# allow for lr schedulers as well
self.setup_optimizers(model)
# init torch data parallel
model = self.__init_torch_data_parallel(model)
# hack forward to do autocast for the user
self.model_autocast_original_forward = model.forward
# init half precision
if self.trainer.amp_backend:
model = self.__init_half_precision(model)
self.trainer.convert_to_lightning_optimizers()
self.trainer.model = model
def __init_torch_data_parallel(self, model):
# create list of device ids
device_ids = self.trainer.data_parallel_device_ids
if isinstance(device_ids, int):
device_ids = list(range(device_ids))
# set dp device
torch.cuda.set_device(self.trainer.root_gpu)
model = LightningDataParallel(model, device_ids=device_ids)
return model
def __init_half_precision(self, model):
if self.trainer.amp_backend == AMPType.NATIVE:
self.__init_native_amp(model)
else:
model = self.__init_nvidia_apex(model)
return model
def __init_native_amp(self, model):
model.forward = torch.cuda.amp.autocast()(model.forward)
def __init_nvidia_apex(self, model):
# check for this bug (amp + dp + !01 doesn't work)
# https://github.com/NVIDIA/apex/issues/227
if self.trainer.amp_level == 'O2':
raise MisconfigurationException(
f'Amp level {self.trainer.amp_level} with DataParallel is not supported.'
f' See this note from NVIDIA for more info: https://github.com/NVIDIA/apex/issues/227.'
f' We recommend you switch to ddp if you want to use amp')
else:
model = self.trainer.precision_connector.connect(model)
return model
def train(self):
model = self.trainer.model
# set up training routine
self.trainer.train_loop.setup_training(model)
# train or test
results = self.train_or_test()
return results
def teardown(self):
# replace the original fwd function
self.trainer.model.forward = self.model_autocast_original_forward
self.barrier()
def training_step(self, args):
if self.trainer.amp_backend == AMPType.NATIVE:
with torch.cuda.amp.autocast():
output = self.trainer.model(*args)
else:
output = self.trainer.model(*args)
return output
def validation_step(self, args):
output = self.training_step(args)
return output
def test_step(self, args):
output = self.training_step(args)
return output
def training_step_end(self, output):
if isinstance(output, Result):
output.dp_reduce()
elif isinstance(output, torch.Tensor):
output = output.mean()
return output
def validation_step_end(self, output):
if isinstance(output, Result):
output.dp_reduce()
elif isinstance(output, torch.Tensor):
output = output.mean()
return output
def test_step_end(self, output):
if isinstance(output, Result):
output.dp_reduce()
elif isinstance(output, torch.Tensor):
output = output.mean()
return output
def reinit_scheduler_properties(self, optimizers: list, schedulers: list):
"""
Reinitialize optimizer.step properties added by schedulers
"""
for scheduler in schedulers:
scheduler = scheduler['scheduler']
for optimizer in optimizers:
# check that we dont mix users optimizers and schedulers
if scheduler.optimizer == optimizer:
# Find the mro belonging to the base lr scheduler class
for i, mro in enumerate(scheduler.__class__.__mro__):
is_regular_scheduler = optim.lr_scheduler._LRScheduler
is_lr_reduce_on_plateau = optim.lr_scheduler.ReduceLROnPlateau
if is_regular_scheduler or is_lr_reduce_on_plateau:
idx = i
state = scheduler.state_dict()
else:
state = None
scheduler.__class__.__mro__[idx].__init__(scheduler, optimizer)
if state is not None:
scheduler.load_state_dict(state)
def get_reference_model(self, model) -> LightningModule:
if isinstance(model, LightningDataParallel):
return model.module
return model
@property
def require_distributed_sampler(self):
return False