lightning/pytorch_lightning/callbacks/early_stopping.py

189 lines
6.8 KiB
Python

r"""
Early Stopping
==============
Monitor a validation metric and stop training when it stops improving.
"""
from copy import deepcopy
import numpy as np
import torch
import torch.distributed as dist
from pytorch_lightning import _logger as log
from pytorch_lightning.callbacks.base import Callback
from pytorch_lightning.utilities import rank_zero_warn
torch_inf = torch.tensor(np.Inf)
try:
import torch_xla
import torch_xla.core.xla_model as xm
except ImportError:
XLA_AVAILABLE = False
else:
XLA_AVAILABLE = True
class EarlyStopping(Callback):
r"""
Args:
monitor: quantity to be monitored. Default: ``'val_loss'``.
min_delta: minimum change in the monitored quantity
to qualify as an improvement, i.e. an absolute
change of less than `min_delta`, will count as no
improvement. Default: ``0``.
patience: number of validation epochs with no improvement
after which training will be stopped. Default: ``0``.
verbose: verbosity mode. Default: ``False``.
mode: one of {auto, min, max}. In `min` mode,
training will stop when the quantity
monitored has stopped decreasing; in `max`
mode it will stop when the quantity
monitored has stopped increasing; in `auto`
mode, the direction is automatically inferred
from the name of the monitored quantity. Default: ``'auto'``.
strict: whether to crash the training if `monitor` is
not found in the validation metrics. Default: ``True``.
Example::
>>> from pytorch_lightning import Trainer
>>> from pytorch_lightning.callbacks import EarlyStopping
>>> early_stopping = EarlyStopping('val_loss')
>>> trainer = Trainer(early_stop_callback=early_stopping)
"""
mode_dict = {
'min': torch.lt,
'max': torch.gt,
}
def __init__(self, monitor: str = 'val_loss', min_delta: float = 0.0, patience: int = 3,
verbose: bool = False, mode: str = 'auto', strict: bool = True):
super().__init__()
self.monitor = monitor
self.patience = patience
self.verbose = verbose
self.strict = strict
self.min_delta = min_delta
self.wait_count = 0
self.stopped_epoch = 0
self.mode = mode
if mode not in self.mode_dict:
if self.verbose > 0:
log.info(f'EarlyStopping mode {mode} is unknown, fallback to auto mode.')
self.mode = 'auto'
if self.mode == 'auto':
if self.monitor == 'acc':
self.mode = 'max'
else:
self.mode = 'min'
if self.verbose > 0:
log.info(f'EarlyStopping mode set to {self.mode} for monitoring {self.monitor}.')
self.min_delta *= 1 if self.monitor_op == torch.gt else -1
self.best_score = torch_inf if self.monitor_op == torch.lt else -torch_inf
def _validate_condition_metric(self, logs):
"""
Checks that the condition metric for early stopping is good
Args:
logs: callback metrics from validation output
Return:
True if specified metric is available
"""
monitor_val = logs.get(self.monitor)
error_msg = (f'Early stopping conditioned on metric `{self.monitor}`'
f' which is not available. Either add `{self.monitor}` to the return of '
f' validation_epoch end or modify your EarlyStopping callback to use any of the '
f'following: `{"`, `".join(list(logs.keys()))}`')
if monitor_val is None:
if self.strict:
raise RuntimeError(error_msg)
if self.verbose > 0:
rank_zero_warn(error_msg, RuntimeWarning)
return False
return True
@property
def monitor_op(self):
return self.mode_dict[self.mode]
def state_dict(self):
return {
'wait_count': self.wait_count,
'stopped_epoch': self.stopped_epoch,
'best_score': self.best_score,
'patience': self.patience
}
def load_state_dict(self, state_dict):
state_dict = deepcopy(state_dict)
self.wait_count = state_dict['wait_count']
self.stopped_epoch = state_dict['stopped_epoch']
self.best_score = state_dict['best_score']
self.patience = state_dict['patience']
def on_sanity_check_end(self, trainer, pl_module):
logs = trainer.callback_metrics
self._validate_condition_metric(logs)
def on_validation_end(self, trainer, pl_module):
self._run_early_stopping_check(trainer, pl_module)
def _run_early_stopping_check(self, trainer, pl_module):
logs = trainer.callback_metrics
if not self._validate_condition_metric(logs):
return # short circuit if metric not present
current = logs.get(self.monitor)
if not isinstance(current, torch.Tensor):
current = torch.tensor(current, device=pl_module.device)
if trainer.use_tpu and XLA_AVAILABLE:
current = current.cpu()
if self.monitor_op(current - self.min_delta, self.best_score):
self.best_score = current
self.wait_count = 0
else:
self.wait_count += 1
should_stop = self.wait_count >= self.patience
if bool(should_stop):
self.stopped_epoch = trainer.current_epoch
trainer.should_stop = True
# stop every ddp process if any world process decides to stop
self._stop_distributed_training(trainer, pl_module)
def _stop_distributed_training(self, trainer, pl_module):
# in ddp make sure all processes stop when one is flagged
if trainer.use_ddp or trainer.use_ddp2:
stop = torch.tensor(int(trainer.should_stop), device=pl_module.device)
dist.all_reduce(stop, op=dist.reduce_op.SUM)
dist.barrier()
trainer.should_stop = stop == trainer.world_size
if trainer.use_tpu:
stop = torch.tensor(int(trainer.should_stop), device=pl_module.device, dtype=torch.int32)
stop = xm.mesh_reduce("stop_signal", stop, torch.cat)
torch_xla.core.xla_model.rendezvous("pl.EarlyStoppingCallback.stop_distributed_training_check")
trainer.should_stop = int(stop.item()) == trainer.world_size
def on_train_end(self, trainer, pl_module):
if self.stopped_epoch > 0 and self.verbose > 0:
rank_zero_warn('Displayed epoch numbers by `EarlyStopping` start from "1" until v0.6.x,'
' but will start from "0" in v0.8.0.', DeprecationWarning)
log.info(f'Epoch {self.stopped_epoch + 1:05d}: early stopping triggered.')