122 lines
4.2 KiB
Python
122 lines
4.2 KiB
Python
# Copyright The PyTorch Lightning team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
r"""
|
|
BasePredictionWriter
|
|
====================
|
|
|
|
Aids in saving predictions
|
|
"""
|
|
from typing import Any, Optional, Sequence
|
|
|
|
import pytorch_lightning as pl
|
|
from pytorch_lightning.callbacks.base import Callback
|
|
from pytorch_lightning.utilities import LightningEnum
|
|
from pytorch_lightning.utilities.exceptions import MisconfigurationException
|
|
|
|
|
|
class WriteInterval(LightningEnum):
|
|
BATCH = "batch"
|
|
EPOCH = "epoch"
|
|
BATCH_AND_EPOCH = "batch_and_epoch"
|
|
|
|
@property
|
|
def on_batch(self) -> bool:
|
|
return self in (self.BATCH, self.BATCH_AND_EPOCH)
|
|
|
|
@property
|
|
def on_epoch(self) -> bool:
|
|
return self in (self.EPOCH, self.BATCH_AND_EPOCH)
|
|
|
|
|
|
class BasePredictionWriter(Callback):
|
|
"""Base class to implement how the predictions should be stored.
|
|
|
|
Args:
|
|
write_interval: When to write.
|
|
|
|
Example::
|
|
|
|
import torch
|
|
from pytorch_lightning.callbacks import BasePredictionWriter
|
|
|
|
class CustomWriter(BasePredictionWriter):
|
|
|
|
def __init__(self, output_dir: str, write_interval: str):
|
|
super().__init__(write_interval)
|
|
self.output_dir
|
|
|
|
def write_on_batch_end(
|
|
self, trainer, pl_module: 'LightningModule', prediction: Any, batch_indices: List[int], batch: Any,
|
|
batch_idx: int, dataloader_idx: int
|
|
):
|
|
torch.save(prediction, os.path.join(self.output_dir, dataloader_idx, f"{batch_idx}.pt"))
|
|
|
|
def write_on_epoch_end(
|
|
self, trainer, pl_module: 'LightningModule', predictions: List[Any], batch_indices: List[Any]
|
|
):
|
|
torch.save(predictions, os.path.join(self.output_dir, "predictions.pt"))
|
|
"""
|
|
|
|
def __init__(self, write_interval: str = "batch") -> None:
|
|
if write_interval not in list(WriteInterval):
|
|
raise MisconfigurationException(f"`write_interval` should be one of {[i.value for i in WriteInterval]}.")
|
|
self.interval = WriteInterval(write_interval)
|
|
|
|
def write_on_batch_end(
|
|
self,
|
|
trainer: "pl.Trainer",
|
|
pl_module: "pl.LightningModule",
|
|
prediction: Any,
|
|
batch_indices: Optional[Sequence[int]],
|
|
batch: Any,
|
|
batch_idx: int,
|
|
dataloader_idx: int,
|
|
) -> None:
|
|
"""Override with the logic to write a single batch."""
|
|
raise NotImplementedError()
|
|
|
|
def write_on_epoch_end(
|
|
self,
|
|
trainer: "pl.Trainer",
|
|
pl_module: "pl.LightningModule",
|
|
predictions: Sequence[Any],
|
|
batch_indices: Optional[Sequence[Any]],
|
|
) -> None:
|
|
"""Override with the logic to write all batches."""
|
|
raise NotImplementedError()
|
|
|
|
def on_predict_batch_end(
|
|
self,
|
|
trainer: "pl.Trainer",
|
|
pl_module: "pl.LightningModule",
|
|
outputs: Any,
|
|
batch: Any,
|
|
batch_idx: int,
|
|
dataloader_idx: int,
|
|
) -> None:
|
|
if not self.interval.on_batch:
|
|
return
|
|
is_distributed = trainer.accelerator_connector.is_distributed
|
|
batch_indices = trainer.predict_loop.epoch_loop.current_batch_indices if is_distributed else None
|
|
self.write_on_batch_end(trainer, pl_module, outputs, batch_indices, batch, batch_idx, dataloader_idx)
|
|
|
|
def on_predict_epoch_end(
|
|
self, trainer: "pl.Trainer", pl_module: "pl.LightningModule", outputs: Sequence[Any]
|
|
) -> None:
|
|
if not self.interval.on_epoch:
|
|
return
|
|
is_distributed = trainer.accelerator_connector.is_distributed
|
|
epoch_batch_indices = trainer.predict_loop.epoch_batch_indices if is_distributed else None
|
|
self.write_on_epoch_end(trainer, pl_module, trainer.predict_loop.predictions, epoch_batch_indices)
|