253 lines
10 KiB
Python
253 lines
10 KiB
Python
# Copyright The PyTorch Lightning team.
|
||
#
|
||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
# you may not use this file except in compliance with the License.
|
||
# You may obtain a copy of the License at
|
||
#
|
||
# http://www.apache.org/licenses/LICENSE-2.0
|
||
#
|
||
# Unless required by applicable law or agreed to in writing, software
|
||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
# See the License for the specific language governing permissions and
|
||
# limitations under the License.
|
||
"""
|
||
GPU Stats Monitor
|
||
=================
|
||
|
||
Monitor and logs GPU stats during training.
|
||
|
||
"""
|
||
|
||
import os
|
||
import shutil
|
||
import subprocess
|
||
import time
|
||
from typing import Any, Dict, List, Optional, Tuple
|
||
|
||
import torch
|
||
|
||
import pytorch_lightning as pl
|
||
from pytorch_lightning.callbacks.base import Callback
|
||
from pytorch_lightning.utilities import DeviceType, rank_zero_only
|
||
from pytorch_lightning.utilities.exceptions import MisconfigurationException
|
||
from pytorch_lightning.utilities.parsing import AttributeDict
|
||
from pytorch_lightning.utilities.types import STEP_OUTPUT
|
||
|
||
|
||
class GPUStatsMonitor(Callback):
|
||
r"""
|
||
Automatically monitors and logs GPU stats during training stage. ``GPUStatsMonitor``
|
||
is a callback and in order to use it you need to assign a logger in the ``Trainer``.
|
||
|
||
Args:
|
||
memory_utilization: Set to ``True`` to monitor used, free and percentage of memory
|
||
utilization at the start and end of each step. Default: ``True``.
|
||
gpu_utilization: Set to ``True`` to monitor percentage of GPU utilization
|
||
at the start and end of each step. Default: ``True``.
|
||
intra_step_time: Set to ``True`` to monitor the time of each step. Default: ``False``.
|
||
inter_step_time: Set to ``True`` to monitor the time between the end of one step
|
||
and the start of the next step. Default: ``False``.
|
||
fan_speed: Set to ``True`` to monitor percentage of fan speed. Default: ``False``.
|
||
temperature: Set to ``True`` to monitor the memory and gpu temperature in degree Celsius.
|
||
Default: ``False``.
|
||
|
||
Raises:
|
||
MisconfigurationException:
|
||
If NVIDIA driver is not installed, not running on GPUs, or ``Trainer`` has no logger.
|
||
|
||
Example::
|
||
|
||
>>> from pytorch_lightning import Trainer
|
||
>>> from pytorch_lightning.callbacks import GPUStatsMonitor
|
||
>>> gpu_stats = GPUStatsMonitor() # doctest: +SKIP
|
||
>>> trainer = Trainer(callbacks=[gpu_stats]) # doctest: +SKIP
|
||
|
||
GPU stats are mainly based on `nvidia-smi --query-gpu` command. The description of the queries is as follows:
|
||
|
||
- **fan.speed** – The fan speed value is the percent of maximum speed that the device's fan is currently
|
||
intended to run at. It ranges from 0 to 100 %. Note: The reported speed is the intended fan speed.
|
||
If the fan is physically blocked and unable to spin, this output will not match the actual fan speed.
|
||
Many parts do not report fan speeds because they rely on cooling via fans in the surrounding enclosure.
|
||
- **memory.used** – Total memory allocated by active contexts.
|
||
- **memory.free** – Total free memory.
|
||
- **utilization.gpu** – Percent of time over the past sample period during which one or more kernels was
|
||
executing on the GPU. The sample period may be between 1 second and 1/6 second depending on the product.
|
||
- **utilization.memory** – Percent of time over the past sample period during which global (device) memory was
|
||
being read or written. The sample period may be between 1 second and 1/6 second depending on the product.
|
||
- **temperature.gpu** – Core GPU temperature, in degrees C.
|
||
- **temperature.memory** – HBM memory temperature, in degrees C.
|
||
|
||
"""
|
||
|
||
def __init__(
|
||
self,
|
||
memory_utilization: bool = True,
|
||
gpu_utilization: bool = True,
|
||
intra_step_time: bool = False,
|
||
inter_step_time: bool = False,
|
||
fan_speed: bool = False,
|
||
temperature: bool = False,
|
||
):
|
||
super().__init__()
|
||
|
||
if shutil.which("nvidia-smi") is None:
|
||
raise MisconfigurationException(
|
||
"Cannot use GPUStatsMonitor callback because NVIDIA driver is not installed."
|
||
)
|
||
|
||
self._log_stats = AttributeDict(
|
||
{
|
||
"memory_utilization": memory_utilization,
|
||
"gpu_utilization": gpu_utilization,
|
||
"intra_step_time": intra_step_time,
|
||
"inter_step_time": inter_step_time,
|
||
"fan_speed": fan_speed,
|
||
"temperature": temperature,
|
||
}
|
||
)
|
||
|
||
# The logical device IDs for selected devices
|
||
self._device_ids: List[int] = [] # will be assigned later in setup()
|
||
|
||
# The unmasked real GPU IDs
|
||
self._gpu_ids: List[str] = [] # will be assigned later in setup()
|
||
|
||
def setup(self, trainer: "pl.Trainer", pl_module: "pl.LightningModule", stage: Optional[str] = None) -> None:
|
||
if not trainer.logger:
|
||
raise MisconfigurationException("Cannot use GPUStatsMonitor callback with Trainer that has no logger.")
|
||
|
||
if trainer._device_type != DeviceType.GPU:
|
||
raise MisconfigurationException(
|
||
"You are using GPUStatsMonitor but are not running on GPU"
|
||
f" since gpus attribute in Trainer is set to {trainer.gpus}."
|
||
)
|
||
|
||
# The logical device IDs for selected devices
|
||
self._device_ids: List[int] = sorted(set(trainer.data_parallel_device_ids))
|
||
|
||
# The unmasked real GPU IDs
|
||
self._gpu_ids: List[int] = self._get_gpu_ids(self._device_ids)
|
||
|
||
def on_train_epoch_start(self, trainer: "pl.Trainer", pl_module: "pl.LightningModule") -> None:
|
||
self._snap_intra_step_time = None
|
||
self._snap_inter_step_time = None
|
||
|
||
@rank_zero_only
|
||
def on_train_batch_start(
|
||
self, trainer: "pl.Trainer", pl_module: "pl.LightningModule", batch: Any, batch_idx: int, dataloader_idx: int
|
||
) -> None:
|
||
if self._log_stats.intra_step_time:
|
||
self._snap_intra_step_time = time.time()
|
||
|
||
if not self._should_log(trainer):
|
||
return
|
||
|
||
gpu_stat_keys = self._get_gpu_stat_keys()
|
||
gpu_stats = self._get_gpu_stats([k for k, _ in gpu_stat_keys])
|
||
logs = self._parse_gpu_stats(self._device_ids, gpu_stats, gpu_stat_keys)
|
||
|
||
if self._log_stats.inter_step_time and self._snap_inter_step_time:
|
||
# First log at beginning of second step
|
||
logs["batch_time/inter_step (ms)"] = (time.time() - self._snap_inter_step_time) * 1000
|
||
|
||
trainer.logger.log_metrics(logs, step=trainer.global_step)
|
||
|
||
@rank_zero_only
|
||
def on_train_batch_end(
|
||
self,
|
||
trainer: "pl.Trainer",
|
||
pl_module: "pl.LightningModule",
|
||
outputs: STEP_OUTPUT,
|
||
batch: Any,
|
||
batch_idx: int,
|
||
dataloader_idx: int,
|
||
) -> None:
|
||
if self._log_stats.inter_step_time:
|
||
self._snap_inter_step_time = time.time()
|
||
|
||
if not self._should_log(trainer):
|
||
return
|
||
|
||
gpu_stat_keys = self._get_gpu_stat_keys() + self._get_gpu_device_stat_keys()
|
||
gpu_stats = self._get_gpu_stats([k for k, _ in gpu_stat_keys])
|
||
logs = self._parse_gpu_stats(self._device_ids, gpu_stats, gpu_stat_keys)
|
||
|
||
if self._log_stats.intra_step_time and self._snap_intra_step_time:
|
||
logs["batch_time/intra_step (ms)"] = (time.time() - self._snap_intra_step_time) * 1000
|
||
|
||
trainer.logger.log_metrics(logs, step=trainer.global_step)
|
||
|
||
@staticmethod
|
||
def _get_gpu_ids(device_ids: List[int]) -> List[str]:
|
||
"""Get the unmasked real GPU IDs."""
|
||
# All devices if `CUDA_VISIBLE_DEVICES` unset
|
||
default = ",".join(str(i) for i in range(torch.cuda.device_count()))
|
||
cuda_visible_devices: List[str] = os.getenv("CUDA_VISIBLE_DEVICES", default=default).split(",")
|
||
return [cuda_visible_devices[device_id].strip() for device_id in device_ids]
|
||
|
||
def _get_gpu_stats(self, queries: List[str]) -> List[List[float]]:
|
||
if not queries:
|
||
return []
|
||
|
||
"""Run nvidia-smi to get the gpu stats"""
|
||
gpu_query = ",".join(queries)
|
||
format = "csv,nounits,noheader"
|
||
gpu_ids = ",".join(self._gpu_ids)
|
||
result = subprocess.run(
|
||
[shutil.which("nvidia-smi"), f"--query-gpu={gpu_query}", f"--format={format}", f"--id={gpu_ids}"],
|
||
encoding="utf-8",
|
||
stdout=subprocess.PIPE,
|
||
stderr=subprocess.PIPE, # for backward compatibility with python version 3.6
|
||
check=True,
|
||
)
|
||
|
||
def _to_float(x: str) -> float:
|
||
try:
|
||
return float(x)
|
||
except ValueError:
|
||
return 0.0
|
||
|
||
stats = result.stdout.strip().split(os.linesep)
|
||
stats = [[_to_float(x) for x in s.split(", ")] for s in stats]
|
||
return stats
|
||
|
||
@staticmethod
|
||
def _parse_gpu_stats(
|
||
device_ids: List[int], stats: List[List[float]], keys: List[Tuple[str, str]]
|
||
) -> Dict[str, float]:
|
||
"""Parse the gpu stats into a loggable dict."""
|
||
logs = {}
|
||
for i, device_id in enumerate(device_ids):
|
||
for j, (x, unit) in enumerate(keys):
|
||
logs[f"device_id: {device_id}/{x} ({unit})"] = stats[i][j]
|
||
return logs
|
||
|
||
def _get_gpu_stat_keys(self) -> List[Tuple[str, str]]:
|
||
"""Get the GPU stats keys."""
|
||
stat_keys = []
|
||
|
||
if self._log_stats.gpu_utilization:
|
||
stat_keys.append(("utilization.gpu", "%"))
|
||
|
||
if self._log_stats.memory_utilization:
|
||
stat_keys.extend([("memory.used", "MB"), ("memory.free", "MB"), ("utilization.memory", "%")])
|
||
|
||
return stat_keys
|
||
|
||
def _get_gpu_device_stat_keys(self) -> List[Tuple[str, str]]:
|
||
"""Get the device stats keys."""
|
||
stat_keys = []
|
||
|
||
if self._log_stats.fan_speed:
|
||
stat_keys.append(("fan.speed", "%"))
|
||
|
||
if self._log_stats.temperature:
|
||
stat_keys.extend([("temperature.gpu", "°C"), ("temperature.memory", "°C")])
|
||
|
||
return stat_keys
|
||
|
||
@staticmethod
|
||
def _should_log(trainer) -> bool:
|
||
return (trainer.global_step + 1) % trainer.log_every_n_steps == 0 or trainer.should_stop
|