lightning/tests/trainer/test_correct_freq_accumulat...

45 lines
1.3 KiB
Python

"""
Tests to ensure that the training loop works with a dict
"""
from pytorch_lightning import Trainer
from tests.base.model_template import EvalModelTemplate
import os
def test_training_step_scalar(tmpdir):
"""
Tests that only training_step can be used
"""
os.environ['PL_DEV_DEBUG'] = '1'
model = EvalModelTemplate()
model.validation_step = None
model.test_step = None
model.training_step = model.training_step_result_obj_dp
model.training_step_end = None
model.training_epoch_end = None
model.validation_step = model.validation_step_result_obj_dp
model.validation_step_end = None
model.validation_epoch_end = None
model.test_dataloader = None
trainer = Trainer(
default_root_dir=tmpdir,
limit_train_batches=2,
limit_val_batches=2,
max_epochs=2,
row_log_interval=1,
weights_summary=None,
)
trainer.fit(model)
# epoch 0
assert trainer.dev_debugger.logged_metrics[0]['global_step'] == 0
assert trainer.dev_debugger.logged_metrics[1]['global_step'] == 1
assert trainer.dev_debugger.logged_metrics[2]['global_step'] == 1
# epoch 1
assert trainer.dev_debugger.logged_metrics[3]['global_step'] == 2
assert trainer.dev_debugger.logged_metrics[4]['global_step'] == 3
assert trainer.dev_debugger.logged_metrics[5]['global_step'] == 3