lightning/pytorch_lightning/utilities/argparse_utils.py

224 lines
7.7 KiB
Python

import inspect
from argparse import ArgumentParser, Namespace
from typing import Union, List, Tuple, Any
from pytorch_lightning.utilities import parsing
def from_argparse_args(cls, args: Union[Namespace, ArgumentParser], **kwargs):
"""
Create an instance from CLI arguments.
Args:
args: The parser or namespace to take arguments from. Only known arguments will be
parsed and passed to the :class:`Trainer`.
**kwargs: Additional keyword arguments that may override ones in the parser or namespace.
These must be valid Trainer arguments.
Example:
>>> from pytorch_lightning import Trainer
>>> parser = ArgumentParser(add_help=False)
>>> parser = Trainer.add_argparse_args(parser)
>>> parser.add_argument('--my_custom_arg', default='something') # doctest: +SKIP
>>> args = Trainer.parse_argparser(parser.parse_args(""))
>>> trainer = Trainer.from_argparse_args(args, logger=False)
"""
if isinstance(args, ArgumentParser):
args = cls.parse_argparser(args)
params = vars(args)
# we only want to pass in valid Trainer args, the rest may be user specific
valid_kwargs = inspect.signature(cls.__init__).parameters
trainer_kwargs = dict((name, params[name]) for name in valid_kwargs if name in params)
trainer_kwargs.update(**kwargs)
return cls(**trainer_kwargs)
def parse_argparser(cls, arg_parser: Union[ArgumentParser, Namespace]) -> Namespace:
"""Parse CLI arguments, required for custom bool types."""
args = arg_parser.parse_args() if isinstance(arg_parser, ArgumentParser) else arg_parser
types_default = {
arg: (arg_types, arg_default) for arg, arg_types, arg_default in get_init_arguments_and_types(cls)
}
modified_args = {}
for k, v in vars(args).items():
if k in types_default and v is None:
# We need to figure out if the None is due to using nargs="?" or if it comes from the default value
arg_types, arg_default = types_default[k]
if bool in arg_types and isinstance(arg_default, bool):
# Value has been passed as a flag => It is currently None, so we need to set it to True
# We always set to True, regardless of the default value.
# Users must pass False directly, but when passing nothing True is assumed.
# i.e. the only way to disable somthing that defaults to True is to use the long form:
# "--a_default_true_arg False" becomes False, while "--a_default_false_arg" becomes None,
# which then becomes True here.
v = True
modified_args[k] = v
return Namespace(**modified_args)
def get_init_arguments_and_types(cls) -> List[Tuple[str, Tuple, Any]]:
r"""Scans the Trainer signature and returns argument names, types and default values.
Returns:
List with tuples of 3 values:
(argument name, set with argument types, argument default value).
Examples:
>>> from pytorch_lightning import Trainer
>>> args = get_init_arguments_and_types(Trainer)
>>> import pprint
>>> pprint.pprint(sorted(args)) # doctest: +ELLIPSIS +NORMALIZE_WHITESPACE
[('accumulate_grad_batches',
(<class 'int'>, typing.Dict[int, int], typing.List[list]),
1),
...
('callbacks',
(typing.List[pytorch_lightning.callbacks.base.Callback],
<class 'NoneType'>),
None),
('check_val_every_n_epoch', (<class 'int'>,), 1),
...
('max_epochs', (<class 'int'>,), 1000),
...
('precision', (<class 'int'>,), 32),
('prepare_data_per_node', (<class 'bool'>,), True),
('process_position', (<class 'int'>,), 0),
('profiler',
(<class 'pytorch_lightning.profiler.profilers.BaseProfiler'>,
<class 'bool'>,
<class 'NoneType'>),
None),
...
"""
trainer_default_params = inspect.signature(cls).parameters
name_type_default = []
for arg in trainer_default_params:
arg_type = trainer_default_params[arg].annotation
arg_default = trainer_default_params[arg].default
try:
arg_types = tuple(arg_type.__args__)
except AttributeError:
arg_types = (arg_type,)
name_type_default.append((arg, arg_types, arg_default))
return name_type_default
def add_argparse_args(cls, parent_parser: ArgumentParser) -> ArgumentParser:
r"""Extends existing argparse by default `Trainer` attributes.
Args:
parent_parser:
The custom cli arguments parser, which will be extended by
the Trainer default arguments.
Only arguments of the allowed types (str, float, int, bool) will
extend the `parent_parser`.
Examples:
>>> import argparse
>>> import pprint
>>> from pytorch_lightning import Trainer
>>> parser = argparse.ArgumentParser()
>>> parser = Trainer.add_argparse_args(parser)
>>> args = parser.parse_args([])
>>> pprint.pprint(vars(args)) # doctest: +ELLIPSIS +NORMALIZE_WHITESPACE
{...
'check_val_every_n_epoch': 1,
'checkpoint_callback': True,
'default_root_dir': None,
'deterministic': False,
'distributed_backend': None,
'early_stop_callback': False,
...
'logger': True,
'max_epochs': 1000,
'max_steps': None,
'min_epochs': 1,
'min_steps': None,
...
'profiler': None,
'progress_bar_refresh_rate': 1,
...}
"""
parser = ArgumentParser(parents=[parent_parser], add_help=False,)
blacklist = ['kwargs']
depr_arg_names = cls.get_deprecated_arg_names() + blacklist
allowed_types = (str, int, float, bool)
# TODO: get "help" from docstring :)
for arg, arg_types, arg_default in (
at for at in get_init_arguments_and_types(cls) if at[0] not in depr_arg_names
):
arg_types = [at for at in allowed_types if at in arg_types]
if not arg_types:
# skip argument with not supported type
continue
arg_kwargs = {}
if bool in arg_types:
arg_kwargs.update(nargs="?", const=True)
# if the only arg type is bool
if len(arg_types) == 1:
use_type = parsing.str_to_bool
# if only two args (str, bool)
elif len(arg_types) == 2 and set(arg_types) == {str, bool}:
use_type = parsing.str_to_bool_or_str
else:
# filter out the bool as we need to use more general
use_type = [at for at in arg_types if at is not bool][0]
else:
use_type = arg_types[0]
if arg == 'gpus' or arg == 'tpu_cores':
use_type = _gpus_allowed_type
arg_default = _gpus_arg_default
# hack for types in (int, float)
if len(arg_types) == 2 and int in set(arg_types) and float in set(arg_types):
use_type = _int_or_float_type
# hack for track_grad_norm
if arg == 'track_grad_norm':
use_type = float
parser.add_argument(
f'--{arg}',
dest=arg,
default=arg_default,
type=use_type,
help='autogenerated by pl.Trainer',
**arg_kwargs,
)
return parser
def _gpus_allowed_type(x) -> Union[int, str]:
if ',' in x:
return str(x)
else:
return int(x)
def _gpus_arg_default(x) -> Union[int, str]:
if ',' in x:
return str(x)
else:
return int(x)
def _int_or_float_type(x) -> Union[int, float]:
if '.' in str(x):
return float(x)
else:
return int(x)