212 lines
7.7 KiB
Python
212 lines
7.7 KiB
Python
# Copyright The PyTorch Lightning team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
r"""
|
|
Early Stopping
|
|
^^^^^^^^^^^^^^
|
|
|
|
Monitor a validation metric and stop training when it stops improving.
|
|
|
|
"""
|
|
import numpy as np
|
|
import torch
|
|
|
|
from pytorch_lightning import _logger as log
|
|
from pytorch_lightning.callbacks.base import Callback
|
|
from pytorch_lightning.utilities import rank_zero_warn
|
|
import os
|
|
|
|
torch_inf = torch.tensor(np.Inf)
|
|
|
|
try:
|
|
import torch_xla
|
|
import torch_xla.core.xla_model as xm
|
|
except ImportError:
|
|
XLA_AVAILABLE = False
|
|
else:
|
|
XLA_AVAILABLE = True
|
|
|
|
|
|
class EarlyStopping(Callback):
|
|
r"""
|
|
|
|
Args:
|
|
monitor: quantity to be monitored. Default: ``'early_stop_on'``.
|
|
min_delta: minimum change in the monitored quantity
|
|
to qualify as an improvement, i.e. an absolute
|
|
change of less than `min_delta`, will count as no
|
|
improvement. Default: ``0.0``.
|
|
patience: number of validation epochs with no improvement
|
|
after which training will be stopped. Default: ``3``.
|
|
verbose: verbosity mode. Default: ``False``.
|
|
mode: one of {auto, min, max}. In `min` mode,
|
|
training will stop when the quantity
|
|
monitored has stopped decreasing; in `max`
|
|
mode it will stop when the quantity
|
|
monitored has stopped increasing; in `auto`
|
|
mode, the direction is automatically inferred
|
|
from the name of the monitored quantity. Default: ``'auto'``.
|
|
strict: whether to crash the training if `monitor` is
|
|
not found in the validation metrics. Default: ``True``.
|
|
|
|
Example::
|
|
|
|
>>> from pytorch_lightning import Trainer
|
|
>>> from pytorch_lightning.callbacks import EarlyStopping
|
|
>>> early_stopping = EarlyStopping('val_loss')
|
|
>>> trainer = Trainer(early_stop_callback=early_stopping)
|
|
"""
|
|
mode_dict = {
|
|
'min': torch.lt,
|
|
'max': torch.gt,
|
|
}
|
|
|
|
def __init__(self, monitor: str = 'early_stop_on', min_delta: float = 0.0, patience: int = 3,
|
|
verbose: bool = False, mode: str = 'auto', strict: bool = True):
|
|
super().__init__()
|
|
self.monitor = monitor
|
|
self.patience = patience
|
|
self.verbose = verbose
|
|
self.strict = strict
|
|
self.min_delta = min_delta
|
|
self.wait_count = 0
|
|
self.stopped_epoch = 0
|
|
self.mode = mode
|
|
self.warned_result_obj = False
|
|
# Indicates, if eval results are used as basis for early stopping
|
|
# It is set to False initially and overwritten, if eval results have been validated
|
|
self.based_on_eval_results = False
|
|
|
|
if mode not in self.mode_dict:
|
|
if self.verbose > 0:
|
|
log.info(f'EarlyStopping mode {mode} is unknown, fallback to auto mode.')
|
|
self.mode = 'auto'
|
|
|
|
if self.mode == 'auto':
|
|
if self.monitor == 'acc':
|
|
self.mode = 'max'
|
|
else:
|
|
self.mode = 'min'
|
|
if self.verbose > 0:
|
|
log.info(f'EarlyStopping mode set to {self.mode} for monitoring {self.monitor}.')
|
|
|
|
self.min_delta *= 1 if self.monitor_op == torch.gt else -1
|
|
self.best_score = torch_inf if self.monitor_op == torch.lt else -torch_inf
|
|
|
|
def _validate_condition_metric(self, logs):
|
|
monitor_val = logs.get(self.monitor)
|
|
error_msg = (f'Early stopping conditioned on metric `{self.monitor}`'
|
|
f' which is not available. Either add `{self.monitor}` to the return of'
|
|
' `validation_epoch_end` or modify your `EarlyStopping` callback to use any of the'
|
|
f' following: `{"`, `".join(list(logs.keys()))}`')
|
|
|
|
if monitor_val is None:
|
|
if self.strict:
|
|
raise RuntimeError(error_msg)
|
|
if self.verbose > 0:
|
|
rank_zero_warn(error_msg, RuntimeWarning)
|
|
|
|
return False
|
|
|
|
return True
|
|
|
|
@property
|
|
def monitor_op(self):
|
|
return self.mode_dict[self.mode]
|
|
|
|
def on_save_checkpoint(self, trainer, pl_module):
|
|
return {
|
|
'wait_count': self.wait_count,
|
|
'stopped_epoch': self.stopped_epoch,
|
|
'best_score': self.best_score,
|
|
'patience': self.patience
|
|
}
|
|
|
|
def on_load_checkpoint(self, checkpointed_state):
|
|
self.wait_count = checkpointed_state['wait_count']
|
|
self.stopped_epoch = checkpointed_state['stopped_epoch']
|
|
self.best_score = checkpointed_state['best_score']
|
|
self.patience = checkpointed_state['patience']
|
|
|
|
def on_validation_end(self, trainer, pl_module):
|
|
if trainer.running_sanity_check:
|
|
return
|
|
|
|
self._run_early_stopping_check(trainer, pl_module)
|
|
|
|
def on_validation_epoch_end(self, trainer, pl_module):
|
|
if trainer.running_sanity_check:
|
|
return
|
|
|
|
if self._validate_condition_metric(trainer.logger_connector.callback_metrics):
|
|
# turn off early stopping in on_train_epoch_end
|
|
self.based_on_eval_results = True
|
|
|
|
def on_train_epoch_end(self, trainer, pl_module):
|
|
# disable early stopping in train loop when there's a val loop
|
|
if self.based_on_eval_results:
|
|
return
|
|
|
|
# early stopping can also work in the train loop when there is no val loop
|
|
should_check_early_stop = False
|
|
|
|
# fallback to monitor key in result dict
|
|
if trainer.logger_connector.callback_metrics.get(self.monitor, None) is not None:
|
|
should_check_early_stop = True
|
|
|
|
if should_check_early_stop:
|
|
self._run_early_stopping_check(trainer, pl_module)
|
|
|
|
def _run_early_stopping_check(self, trainer, pl_module):
|
|
"""
|
|
Checks whether the early stopping condition is met
|
|
and if so tells the trainer to stop the training.
|
|
"""
|
|
logs = trainer.logger_connector.callback_metrics
|
|
|
|
if not self._validate_condition_metric(logs):
|
|
return # short circuit if metric not present
|
|
|
|
current = logs.get(self.monitor)
|
|
|
|
# when in dev debugging
|
|
trainer.dev_debugger.track_early_stopping_history(current)
|
|
|
|
if not isinstance(current, torch.Tensor):
|
|
current = torch.tensor(current, device=pl_module.device)
|
|
|
|
if trainer.use_tpu and XLA_AVAILABLE:
|
|
current = current.cpu()
|
|
|
|
if self.monitor_op(current - self.min_delta, self.best_score):
|
|
self.best_score = current
|
|
self.wait_count = 0
|
|
else:
|
|
self.wait_count += 1
|
|
should_stop = self.wait_count >= self.patience
|
|
|
|
if bool(should_stop):
|
|
self.stopped_epoch = trainer.current_epoch
|
|
trainer.should_stop = True
|
|
|
|
# stop every ddp process if any world process decides to stop
|
|
should_stop = trainer.accelerator_backend.early_stopping_should_stop(pl_module)
|
|
trainer.should_stop = should_stop
|
|
|
|
def on_train_end(self, trainer, pl_module):
|
|
if self.stopped_epoch > 0 and self.verbose > 0:
|
|
rank_zero_warn('Displayed epoch numbers by `EarlyStopping` start from "1" until v0.6.x,'
|
|
' but will start from "0" in v0.8.0.', DeprecationWarning)
|
|
log.info(f'Epoch {self.stopped_epoch + 1:05d}: early stopping triggered.')
|