162 lines
6.0 KiB
Python
162 lines
6.0 KiB
Python
# Copyright The PyTorch Lightning team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
from contextlib import ExitStack
|
|
import torch
|
|
from pytorch_lightning.utilities import AMPType
|
|
from pytorch_lightning.accelerators.base_backend import Accelerator
|
|
from pytorch_lightning.utilities.distributed import rank_zero_only
|
|
from torch.optim.lr_scheduler import _LRScheduler
|
|
|
|
try:
|
|
import horovod.torch as hvd
|
|
except (ModuleNotFoundError, ImportError):
|
|
HOROVOD_AVAILABLE = False
|
|
else:
|
|
HOROVOD_AVAILABLE = True
|
|
|
|
|
|
class HorovodBackend(Accelerator):
|
|
amp_backend: AMPType
|
|
|
|
def __init__(self, trainer):
|
|
super().__init__(trainer)
|
|
|
|
def setup(self, model):
|
|
# call setup after the ddp process has connected
|
|
self.trainer.call_setup_hook(model)
|
|
|
|
if torch.cuda.is_available() and self.trainer.on_gpu:
|
|
# Horovod: pin GPU to local rank
|
|
assert self.trainer.root_gpu == hvd.local_rank()
|
|
torch.cuda.set_device(self.trainer.root_gpu)
|
|
model.cuda(self.trainer.root_gpu)
|
|
|
|
# avoid duplicating progress bar
|
|
if hvd.rank() != 0 and self.trainer.progress_bar_callback is not None:
|
|
self.trainer.progress_bar_callback.disable()
|
|
|
|
# CHOOSE OPTIMIZER
|
|
# allow for lr schedulers as well
|
|
optimizers, lr_schedulers, optimizer_frequencies = self.trainer.init_optimizers(model)
|
|
self.trainer.optimizers = optimizers
|
|
self.trainer.lr_schedulers = lr_schedulers
|
|
self.trainer.optimizer_frequencies = optimizer_frequencies
|
|
|
|
# Horovod: scale the learning rate by the number of workers to account for
|
|
# increased total batch size
|
|
for optimizer in self.trainer.optimizers:
|
|
for param_group in optimizer.param_groups:
|
|
param_group['lr'] *= hvd.size()
|
|
|
|
# Horovod: adjust base LR used by schedulers to match scaled optimizer initial LR
|
|
for scheduler in self.trainer.lr_schedulers:
|
|
scheduler = scheduler['scheduler']
|
|
if isinstance(scheduler, _LRScheduler):
|
|
scheduler.base_lrs = [lr * hvd.size() for lr in scheduler.base_lrs]
|
|
|
|
# Horovod: broadcast parameters & optimizer state to ensure consistent initialization
|
|
hvd.broadcast_parameters(model.state_dict(), root_rank=0)
|
|
for optimizer in self.trainer.optimizers:
|
|
hvd.broadcast_optimizer_state(optimizer, root_rank=0)
|
|
|
|
def filter_named_parameters(model, optimizer):
|
|
opt_params = set([p for group in optimizer.param_groups for p in group.get('params', [])])
|
|
return [(name, p) for name, p in model.named_parameters() if p in opt_params]
|
|
|
|
# Horovod: wrap optimizers to perform gradient aggregation via allreduce
|
|
self.trainer.optimizers = [
|
|
hvd.DistributedOptimizer(optimizer, named_parameters=filter_named_parameters(model, optimizer))
|
|
for optimizer in self.trainer.optimizers
|
|
]
|
|
|
|
# 16-bit
|
|
model, self.trainer.optimizers = self.trainer.precision_connector.connect(model, self.trainer.optimizers)
|
|
|
|
# Update logger rank info from Horovod to avoid race conditions from different ranks
|
|
# creating directories / writing files in the same locations.
|
|
self.trainer.global_rank = hvd.rank()
|
|
rank_zero_only.rank = self.trainer.global_rank
|
|
|
|
self.trainer.model = model
|
|
|
|
def train(self):
|
|
with ExitStack() as stack:
|
|
for optimizer in self.trainer.optimizers:
|
|
# Synchronization will be performed explicitly following backward()
|
|
stack.enter_context(optimizer.skip_synchronize())
|
|
|
|
# set up training routine
|
|
self.trainer.train_loop.setup_training(self.trainer.model)
|
|
|
|
# train or test
|
|
results = self.train_or_test()
|
|
|
|
# Make sure all workers have finished training before returning to the user
|
|
hvd.join()
|
|
return results
|
|
|
|
def teardown(self):
|
|
pass
|
|
|
|
def training_step(self, args):
|
|
if self.trainer.on_gpu:
|
|
batch = args[0]
|
|
batch = self.batch_to_device(batch, hvd.local_rank())
|
|
args[0] = batch
|
|
|
|
if self.trainer.amp_backend == AMPType.NATIVE:
|
|
with torch.cuda.amp.autocast():
|
|
output = self.trainer.model.training_step(*args)
|
|
else:
|
|
output = self.trainer.model.training_step(*args)
|
|
|
|
return output
|
|
|
|
def validation_step(self, args):
|
|
if self.trainer.on_gpu:
|
|
batch = args[0]
|
|
batch = self.batch_to_device(batch, hvd.local_rank())
|
|
args[0] = batch
|
|
|
|
if self.trainer.amp_backend == AMPType.NATIVE:
|
|
with torch.cuda.amp.autocast():
|
|
output = self.trainer.model.validation_step(*args)
|
|
else:
|
|
output = self.trainer.model.validation_step(*args)
|
|
|
|
return output
|
|
|
|
def test_step(self, args):
|
|
if self.trainer.on_gpu:
|
|
batch = args[0]
|
|
batch = self.batch_to_device(batch, hvd.local_rank())
|
|
args[0] = batch
|
|
|
|
if self.trainer.amp_backend == AMPType.NATIVE:
|
|
with torch.cuda.amp.autocast():
|
|
output = self.trainer.model.test_step(*args)
|
|
else:
|
|
output = self.trainer.model.test_step(*args)
|
|
return output
|
|
|
|
def backward(self, closure_loss, optimizer, opt_idx):
|
|
super().backward(closure_loss, optimizer, opt_idx)
|
|
optimizer.synchronize()
|
|
|
|
def on_train_epoch_end(self):
|
|
hvd.join(hvd.local_rank() if self.trainer.on_gpu else -1)
|
|
|
|
def barrier(self, name: str = None):
|
|
hvd.join()
|