lightning/tests/test_y_logging.py

189 lines
4.6 KiB
Python

import pickle
import numpy as np
import torch
from pytorch_lightning import Trainer
from pytorch_lightning.testing import LightningTestModel
from . import testing_utils
RANDOM_FILE_PATHS = list(np.random.randint(12000, 19000, 1000))
ROOT_SEED = 1234
torch.manual_seed(ROOT_SEED)
np.random.seed(ROOT_SEED)
RANDOM_SEEDS = list(np.random.randint(0, 10000, 1000))
def test_testtube_logger():
"""
verify that basic functionality of test tube logger works
"""
reset_seed()
hparams = testing_utils.get_hparams()
model = LightningTestModel(hparams)
save_dir = testing_utils.init_save_dir()
logger = testing_utils.get_test_tube_logger(False)
trainer_options = dict(
max_nb_epochs=1,
train_percent_check=0.01,
logger=logger
)
trainer = Trainer(**trainer_options)
result = trainer.fit(model)
assert result == 1, "Training failed"
testing_utils.clear_save_dir()
def test_testtube_pickle():
"""
Verify that pickling a trainer containing a test tube logger works
"""
reset_seed()
hparams = testing_utils.get_hparams()
model = LightningTestModel(hparams)
save_dir = testing_utils.init_save_dir()
logger = testing_utils.get_test_tube_logger(False)
logger.log_hyperparams(hparams)
logger.save()
trainer_options = dict(
max_nb_epochs=1,
train_percent_check=0.01,
logger=logger
)
trainer = Trainer(**trainer_options)
pkl_bytes = pickle.dumps(trainer)
trainer2 = pickle.loads(pkl_bytes)
trainer2.logger.log_metrics({"acc": 1.0})
testing_utils.clear_save_dir()
# def test_mlflow_logger():
# """
# verify that basic functionality of mlflow logger works
# """
# reset_seed()
#
# try:
# from pytorch_lightning.logging import MLFlowLogger
# except ModuleNotFoundError:
# return
#
# hparams = get_hparams()
# model = LightningTestModel(hparams)
#
# root_dir = os.path.dirname(os.path.realpath(__file__))
# mlflow_dir = os.path.join(root_dir, "mlruns")
# import pdb
# pdb.set_trace()
#
# logger = MLFlowLogger("test", f"file://{mlflow_dir}")
# logger.log_hyperparams(hparams)
# logger.save()
#
# trainer_options = dict(
# max_nb_epochs=1,
# train_percent_check=0.01,
# logger=logger
# )
#
# trainer = Trainer(**trainer_options)
# result = trainer.fit(model)
#
# print('result finished')
# assert result == 1, "Training failed"
#
# shutil.move(mlflow_dir, mlflow_dir + f'_{n}')
# def test_mlflow_pickle():
# """
# verify that pickling trainer with mlflow logger works
# """
# reset_seed()
#
# try:
# from pytorch_lightning.logging import MLFlowLogger
# except ModuleNotFoundError:
# return
#
# hparams = get_hparams()
# model = LightningTestModel(hparams)
#
# root_dir = os.path.dirname(os.path.realpath(__file__))
# mlflow_dir = os.path.join(root_dir, "mlruns")
#
# logger = MLFlowLogger("test", f"file://{mlflow_dir}")
# logger.log_hyperparams(hparams)
# logger.save()
#
# trainer_options = dict(
# max_nb_epochs=1,
# logger=logger
# )
#
# trainer = Trainer(**trainer_options)
# pkl_bytes = pickle.dumps(trainer)
# trainer2 = pickle.loads(pkl_bytes)
# trainer2.logger.log_metrics({"acc": 1.0})
#
# n = RANDOM_FILE_PATHS.pop()
# shutil.move(mlflow_dir, mlflow_dir + f'_{n}')
# def test_custom_logger():
#
# class CustomLogger(LightningLoggerBase):
# def __init__(self):
# super().__init__()
# self.hparams_logged = None
# self.metrics_logged = None
# self.finalized = False
#
# @rank_zero_only
# def log_hyperparams(self, params):
# self.hparams_logged = params
#
# @rank_zero_only
# def log_metrics(self, metrics, step_num):
# self.metrics_logged = metrics
#
# @rank_zero_only
# def finalize(self, status):
# self.finalized_status = status
#
# hparams = get_hparams()
# model = LightningTestModel(hparams)
#
# logger = CustomLogger()
#
# trainer_options = dict(
# max_nb_epochs=1,
# train_percent_check=0.01,
# logger=logger
# )
#
# trainer = Trainer(**trainer_options)
# result = trainer.fit(model)
# assert result == 1, "Training failed"
# assert logger.hparams_logged == hparams
# assert logger.metrics_logged != {}
# assert logger.finalized_status == "success"
def reset_seed():
SEED = RANDOM_SEEDS.pop()
torch.manual_seed(SEED)
np.random.seed(SEED)