233 lines
9.0 KiB
Python
233 lines
9.0 KiB
Python
import functools
|
|
from abc import ABC, abstractmethod
|
|
from typing import Any, Callable, Optional, Union
|
|
from collections.abc import Mapping, Sequence
|
|
from collections import namedtuple
|
|
from copy import deepcopy
|
|
|
|
import os
|
|
import torch
|
|
from torch import nn
|
|
|
|
from pytorch_lightning.utilities.apply_func import apply_to_collection
|
|
from pytorch_lightning.utilities.distributed import gather_all_tensors_if_available
|
|
from pytorch_lightning.metrics.utils import _flatten, dim_zero_cat, dim_zero_mean, dim_zero_sum
|
|
|
|
|
|
class Metric(nn.Module, ABC):
|
|
"""
|
|
Base class for all metrics present in the Metrics API.
|
|
|
|
Implements ``add_state()``, ``forward()``, ``reset()`` and a few other things to
|
|
handle distributed synchronization and per-step metric computation.
|
|
|
|
Override ``update()`` and ``compute()`` functions to implement your own metric. Use
|
|
``add_state()`` to register metric state variables which keep track of state on each
|
|
call of ``update()`` and are synchronized across processes when ``compute()`` is called.
|
|
|
|
Note:
|
|
Metric state variables can either be ``torch.Tensors`` or an empty list which can we used
|
|
to store `torch.Tensors``.
|
|
|
|
Note:
|
|
Different metrics only override ``update()`` and not ``forward()``. A call to ``update()``
|
|
is valid, but it won't return the metric value at the current step. A call to ``forward()``
|
|
automatically calls ``update()`` and also returns the metric value at the current step.
|
|
|
|
Args:
|
|
compute_on_step:
|
|
Forward only calls ``update()`` and returns None if this is set to False. default: True
|
|
ddp_sync_on_step:
|
|
Synchronize metric state across processes at each ``forward()``
|
|
before returning the value at the step. default: False
|
|
process_group:
|
|
Specify the process group on which synchronization is called. default: None (which selects the entire world)
|
|
"""
|
|
def __init__(
|
|
self,
|
|
compute_on_step: bool = True,
|
|
ddp_sync_on_step: bool = False,
|
|
process_group: Optional[Any] = None,
|
|
):
|
|
super().__init__()
|
|
|
|
self.ddp_sync_on_step = ddp_sync_on_step
|
|
self.compute_on_step = compute_on_step
|
|
self.process_group = process_group
|
|
self._to_sync = True
|
|
|
|
self.update = self._wrap_update(self.update)
|
|
self.compute = self._wrap_compute(self.compute)
|
|
self._computed = None
|
|
self._forward_cache = None
|
|
|
|
# initialize state
|
|
self._reductions = {}
|
|
self._defaults = {}
|
|
|
|
def add_state(self, name: str, default, dist_reduce_fx: Optional[Union[str, Callable]] = None):
|
|
"""
|
|
Adds metric state variable. Only used by subclasses.
|
|
|
|
Args:
|
|
name: The name of the state variable. The variable will then be accessible at ``self.name``.
|
|
default: Default value of the state; can either be a ``torch.Tensor`` or an empty list. The state will be
|
|
reset to this value when ``self.reset()`` is called.
|
|
dist_reduce_fx (Optional): Function to reduce state accross mutliple processes in distributed mode.
|
|
If value is ``"sum"``, ``"mean"``, or ``"cat"``, we will use ``torch.sum``, ``torch.mean``,
|
|
and ``torch.cat`` respectively, each with argument ``dim=0``. The user can also pass a custom
|
|
function in this parameter.
|
|
|
|
Note:
|
|
Setting ``dist_reduce_fx`` to None will return the metric state synchronized across different processes.
|
|
However, there won't be any reduction function applied to the synchronized metric state.
|
|
|
|
The metric states would be synced as follows
|
|
|
|
- If the metric state is ``torch.Tensor``, the synced value will be a stacked ``torch.Tensor`` across
|
|
the process dimension if the metric state was a ``torch.Tensor``. The original ``torch.Tensor`` metric
|
|
state retains dimension and hence the synchronized output will be of shape ``(num_process, ...)``.
|
|
|
|
- If the metric state is a ``list``, the synced value will be a ``list`` containing the
|
|
combined elements from all processes.
|
|
|
|
Note:
|
|
When passing a custom function to ``dist_reduce_fx``, expect the synchronized metric state to follow
|
|
the format discussed in the above note.
|
|
|
|
"""
|
|
if not isinstance(default, torch.Tensor) or (isinstance(default, list) and len(default) != 0):
|
|
raise ValueError(
|
|
"state variable must be a tensor or any empty list (where you can append tensors)"
|
|
)
|
|
|
|
if dist_reduce_fx == "sum":
|
|
dist_reduce_fx = dim_zero_sum
|
|
elif dist_reduce_fx == "mean":
|
|
dist_reduce_fx = dim_zero_mean
|
|
elif dist_reduce_fx == "cat":
|
|
dist_reduce_fx = dim_zero_cat
|
|
elif dist_reduce_fx is not None and not isinstance(dist_reduce_fx, Callable):
|
|
raise ValueError(
|
|
"`dist_reduce_fx` must be callable or one of ['mean', 'sum', 'cat', None]"
|
|
)
|
|
|
|
if isinstance(default, torch.Tensor):
|
|
self.register_buffer(name, default)
|
|
else:
|
|
setattr(self, name, default)
|
|
|
|
self._defaults[name] = deepcopy(default)
|
|
self._reductions[name] = dist_reduce_fx
|
|
|
|
def forward(self, *args, **kwargs):
|
|
"""
|
|
Automatically calls ``update()``. Returns the metric value over inputs if ``compute_on_step`` is True.
|
|
"""
|
|
# add current step
|
|
self.update(*args, **kwargs)
|
|
self._forward_cache = None
|
|
|
|
if self.compute_on_step:
|
|
self._to_sync = self.ddp_sync_on_step
|
|
|
|
# save context before switch
|
|
self._cache = {attr: getattr(self, attr) for attr in self._defaults.keys()}
|
|
|
|
# call reset, update, compute, on single batch
|
|
self.reset()
|
|
self.update(*args, **kwargs)
|
|
self._forward_cache = self.compute()
|
|
|
|
# restore context
|
|
for attr, val in self._cache.items():
|
|
setattr(self, attr, val)
|
|
self._to_sync = True
|
|
self._computed = None
|
|
|
|
return self._forward_cache
|
|
|
|
def _sync_dist(self):
|
|
input_dict = {attr: getattr(self, attr) for attr in self._reductions.keys()}
|
|
output_dict = apply_to_collection(
|
|
input_dict,
|
|
torch.Tensor,
|
|
gather_all_tensors_if_available,
|
|
group=self.process_group,
|
|
)
|
|
|
|
for attr, reduction_fn in self._reductions.items():
|
|
# pre-processing ops (stack or flatten for inputs)
|
|
if isinstance(output_dict[attr][0], torch.Tensor):
|
|
output_dict[attr] = torch.stack(output_dict[attr])
|
|
elif isinstance(output_dict[attr][0], list):
|
|
output_dict[attr] = _flatten(output_dict[attr])
|
|
|
|
assert isinstance(reduction_fn, (Callable, None))
|
|
reduced = reduction_fn(output_dict[attr]) if reduction_fn is not None else output_dict[attr]
|
|
setattr(self, attr, reduced)
|
|
|
|
def _wrap_update(self, update):
|
|
@functools.wraps(update)
|
|
def wrapped_func(*args, **kwargs):
|
|
self._computed = None
|
|
return update(*args, **kwargs)
|
|
return wrapped_func
|
|
|
|
def _wrap_compute(self, compute):
|
|
@functools.wraps(compute)
|
|
def wrapped_func(*args, **kwargs):
|
|
# return cached value
|
|
if self._computed is not None:
|
|
return self._computed
|
|
|
|
if (
|
|
self._to_sync
|
|
and torch.distributed.is_available() # noqa: W503
|
|
and torch.distributed.is_initialized() # noqa: W503
|
|
):
|
|
self._sync_dist()
|
|
|
|
self._computed = compute(*args, **kwargs)
|
|
self.reset()
|
|
|
|
return self._computed
|
|
|
|
return wrapped_func
|
|
|
|
@abstractmethod
|
|
def update(self) -> None: # pylint: disable=E0202
|
|
"""
|
|
Override this method to update the state variables of your metric class.
|
|
"""
|
|
pass
|
|
|
|
@abstractmethod
|
|
def compute(self): # pylint: disable=E0202
|
|
"""
|
|
Override this method to compute the final metric value from state variables
|
|
synchronized across the distributed backend.
|
|
"""
|
|
pass
|
|
|
|
def reset(self):
|
|
"""
|
|
This method automatically resets the metric state variables to their default value.
|
|
"""
|
|
for attr, default in self._defaults.items():
|
|
current_val = getattr(self, attr)
|
|
if isinstance(current_val, torch.Tensor):
|
|
setattr(self, attr, deepcopy(default).to(current_val.device))
|
|
else:
|
|
setattr(self, attr, deepcopy(default))
|
|
|
|
def __getstate__(self):
|
|
# ignore update and compute functions for pickling
|
|
return {k: v for k, v in self.__dict__.items() if k not in ["update", "compute"]}
|
|
|
|
def __setstate__(self, state):
|
|
# manually restore update and compute functions for pickling
|
|
self.__dict__.update(state)
|
|
self.update = self._wrap_update(self.update)
|
|
self.compute = self._wrap_compute(self.compute)
|