lightning/pytorch_lightning/metrics/functional/classification.py

1057 lines
35 KiB
Python

from functools import wraps
from typing import Callable, Optional, Sequence, Tuple
import torch
from pytorch_lightning.metrics.functional.reduction import class_reduce, reduce
from torch.nn import functional as F
from pytorch_lightning.utilities import rank_zero_warn
def to_onehot(
tensor: torch.Tensor,
num_classes: Optional[int] = None,
) -> torch.Tensor:
"""
Converts a dense label tensor to one-hot format
Args:
tensor: dense label tensor, with shape [N, d1, d2, ...]
num_classes: number of classes C
Output:
A sparse label tensor with shape [N, C, d1, d2, ...]
Example:
>>> x = torch.tensor([1, 2, 3])
>>> to_onehot(x)
tensor([[0, 1, 0, 0],
[0, 0, 1, 0],
[0, 0, 0, 1]])
"""
if num_classes is None:
num_classes = int(tensor.max().detach().item() + 1)
dtype, device, shape = tensor.dtype, tensor.device, tensor.shape
tensor_onehot = torch.zeros(shape[0], num_classes, *shape[1:],
dtype=dtype, device=device)
index = tensor.long().unsqueeze(1).expand_as(tensor_onehot)
return tensor_onehot.scatter_(1, index, 1.0)
def to_categorical(
tensor: torch.Tensor,
argmax_dim: int = 1
) -> torch.Tensor:
"""
Converts a tensor of probabilities to a dense label tensor
Args:
tensor: probabilities to get the categorical label [N, d1, d2, ...]
argmax_dim: dimension to apply
Return:
A tensor with categorical labels [N, d2, ...]
Example:
>>> x = torch.tensor([[0.2, 0.5], [0.9, 0.1]])
>>> to_categorical(x)
tensor([1, 0])
"""
return torch.argmax(tensor, dim=argmax_dim)
def get_num_classes(
pred: torch.Tensor,
target: torch.Tensor,
num_classes: Optional[int] = None,
) -> int:
"""
Calculates the number of classes for a given prediction and target tensor.
Args:
pred: predicted values
target: true labels
num_classes: number of classes if known
Return:
An integer that represents the number of classes.
"""
num_target_classes = int(target.max().detach().item() + 1)
num_pred_classes = int(pred.max().detach().item() + 1)
num_all_classes = max(num_target_classes, num_pred_classes)
if num_classes is None:
num_classes = num_all_classes
elif num_classes != num_all_classes:
rank_zero_warn(f'You have set {num_classes} number of classes which is'
f' different from predicted ({num_pred_classes}) and'
f' target ({num_target_classes}) number of classes',
RuntimeWarning)
return num_classes
def stat_scores(
pred: torch.Tensor,
target: torch.Tensor,
class_index: int, argmax_dim: int = 1,
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
"""
Calculates the number of true positive, false positive, true negative
and false negative for a specific class
Args:
pred: prediction tensor
target: target tensor
class_index: class to calculate over
argmax_dim: if pred is a tensor of probabilities, this indicates the
axis the argmax transformation will be applied over
Return:
True Positive, False Positive, True Negative, False Negative, Support
Example:
>>> x = torch.tensor([1, 2, 3])
>>> y = torch.tensor([0, 2, 3])
>>> tp, fp, tn, fn, sup = stat_scores(x, y, class_index=1)
>>> tp, fp, tn, fn, sup
(tensor(0), tensor(1), tensor(2), tensor(0), tensor(0))
"""
if pred.ndim == target.ndim + 1:
pred = to_categorical(pred, argmax_dim=argmax_dim)
tp = ((pred == class_index) * (target == class_index)).to(torch.long).sum()
fp = ((pred == class_index) * (target != class_index)).to(torch.long).sum()
tn = ((pred != class_index) * (target != class_index)).to(torch.long).sum()
fn = ((pred != class_index) * (target == class_index)).to(torch.long).sum()
sup = (target == class_index).to(torch.long).sum()
return tp, fp, tn, fn, sup
def stat_scores_multiple_classes(
pred: torch.Tensor,
target: torch.Tensor,
num_classes: Optional[int] = None,
argmax_dim: int = 1,
reduction: str = 'none',
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
"""
Calculates the number of true positive, false positive, true negative
and false negative for each class
Args:
pred: prediction tensor
target: target tensor
num_classes: number of classes if known
argmax_dim: if pred is a tensor of probabilities, this indicates the
axis the argmax transformation will be applied over
reduction: a method to reduce metric score over labels (default: none)
Available reduction methods:
- elementwise_mean: takes the mean
- none: pass array
- sum: add elements
Return:
True Positive, False Positive, True Negative, False Negative, Support
Example:
>>> x = torch.tensor([1, 2, 3])
>>> y = torch.tensor([0, 2, 3])
>>> tps, fps, tns, fns, sups = stat_scores_multiple_classes(x, y)
>>> tps
tensor([0., 0., 1., 1.])
>>> fps
tensor([0., 1., 0., 0.])
>>> tns
tensor([2., 2., 2., 2.])
>>> fns
tensor([1., 0., 0., 0.])
>>> sups
tensor([1., 0., 1., 1.])
"""
if pred.ndim == target.ndim + 1:
pred = to_categorical(pred, argmax_dim=argmax_dim)
num_classes = get_num_classes(pred=pred, target=target, num_classes=num_classes)
if pred.dtype != torch.bool:
pred = pred.clamp_max(max=num_classes)
if target.dtype != torch.bool:
target = target.clamp_max(max=num_classes)
possible_reductions = ('none', 'sum', 'elementwise_mean')
if reduction not in possible_reductions:
raise ValueError("reduction type %s not supported" % reduction)
if reduction == 'none':
pred = pred.view((-1, )).long()
target = target.view((-1, )).long()
tps = torch.zeros((num_classes + 1,), device=pred.device)
fps = torch.zeros((num_classes + 1,), device=pred.device)
tns = torch.zeros((num_classes + 1,), device=pred.device)
fns = torch.zeros((num_classes + 1,), device=pred.device)
sups = torch.zeros((num_classes + 1,), device=pred.device)
match_true = (pred == target).float()
match_false = 1 - match_true
tps.scatter_add_(0, pred, match_true)
fps.scatter_add_(0, pred, match_false)
fns.scatter_add_(0, target, match_false)
tns = pred.size(0) - (tps + fps + fns)
sups.scatter_add_(0, target, torch.ones_like(match_true))
tps = tps[:num_classes]
fps = fps[:num_classes]
tns = tns[:num_classes]
fns = fns[:num_classes]
sups = sups[:num_classes]
elif reduction == 'sum' or reduction == 'elementwise_mean':
count_match_true = (pred == target).sum().float()
oob_tp, oob_fp, oob_tn, oob_fn, oob_sup = stat_scores(pred, target, num_classes, argmax_dim)
tps = count_match_true - oob_tp
fps = pred.nelement() - count_match_true - oob_fp
fns = pred.nelement() - count_match_true - oob_fn
tns = pred.nelement() * (num_classes + 1) - (tps + fps + fns + oob_tn)
sups = pred.nelement() - oob_sup.float()
if reduction == 'elementwise_mean':
tps /= num_classes
fps /= num_classes
fns /= num_classes
tns /= num_classes
sups /= num_classes
return tps.float(), fps.float(), tns.float(), fns.float(), sups.float()
def accuracy(
pred: torch.Tensor,
target: torch.Tensor,
num_classes: Optional[int] = None,
class_reduction: str = 'micro',
return_state: bool = False
) -> torch.Tensor:
"""
Computes the accuracy classification score
Args:
pred: predicted labels
target: ground truth labels
num_classes: number of classes
class_reduction: method to reduce metric score over labels
- ``'micro'``: calculate metrics globally (default)
- ``'macro'``: calculate metrics for each label, and find their unweighted mean.
- ``'weighted'``: calculate metrics for each label, and find their weighted mean.
- ``'none'``: returns calculated metric per class
return_state: returns a internal state that can be ddp reduced
before doing the final calculation
Return:
A Tensor with the accuracy score.
Example:
>>> x = torch.tensor([0, 1, 2, 3])
>>> y = torch.tensor([0, 1, 2, 2])
>>> accuracy(x, y)
tensor(0.7500)
"""
tps, fps, tns, fns, sups = stat_scores_multiple_classes(
pred=pred, target=target, num_classes=num_classes)
if return_state:
return {'tps': tps, 'sups': sups}
return class_reduce(tps, sups, sups, class_reduction=class_reduction)
def _confmat_normalize(cm):
""" Normalization function for confusion matrix """
cm = cm / cm.sum(-1, keepdim=True)
nan_elements = cm[torch.isnan(cm)].nelement()
if nan_elements != 0:
cm[torch.isnan(cm)] = 0
rank_zero_warn(f'{nan_elements} nan values found in confusion matrix have been replaced with zeros.')
return cm
def confusion_matrix(
pred: torch.Tensor,
target: torch.Tensor,
normalize: bool = False,
num_classes: Optional[int] = None
) -> torch.Tensor:
"""
Computes the confusion matrix C where each entry C_{i,j} is the number of observations
in group i that were predicted in group j.
Args:
pred: estimated targets
target: ground truth labels
normalize: normalizes confusion matrix
num_classes: number of classes
Return:
Tensor, confusion matrix C [num_classes, num_classes ]
Example:
>>> x = torch.tensor([1, 2, 3])
>>> y = torch.tensor([0, 2, 3])
>>> confusion_matrix(x, y)
tensor([[0., 1., 0., 0.],
[0., 0., 0., 0.],
[0., 0., 1., 0.],
[0., 0., 0., 1.]])
"""
num_classes = get_num_classes(pred, target, num_classes)
unique_labels = (target.view(-1) * num_classes + pred.view(-1)).to(torch.int)
bins = torch.bincount(unique_labels, minlength=num_classes ** 2)
cm = bins.reshape(num_classes, num_classes).squeeze().float()
if normalize:
cm = _confmat_normalize(cm)
return cm
def precision_recall(
pred: torch.Tensor,
target: torch.Tensor,
num_classes: Optional[int] = None,
class_reduction: str = 'micro',
return_support: bool = False,
return_state: bool = False
) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Computes precision and recall for different thresholds
Args:
pred: estimated probabilities
target: ground-truth labels
num_classes: number of classes
class_reduction: method to reduce metric score over labels
- ``'micro'``: calculate metrics globally (default)
- ``'macro'``: calculate metrics for each label, and find their unweighted mean.
- ``'weighted'``: calculate metrics for each label, and find their weighted mean.
- ``'none'``: returns calculated metric per class
return_support: returns the support for each class, need for fbeta/f1 calculations
return_state: returns a internal state that can be ddp reduced
before doing the final calculation
Return:
Tensor with precision and recall
Example:
>>> x = torch.tensor([0, 1, 2, 3])
>>> y = torch.tensor([0, 2, 2, 2])
>>> precision_recall(x, y, class_reduction='macro')
(tensor(0.5000), tensor(0.3333))
"""
tps, fps, tns, fns, sups = stat_scores_multiple_classes(pred=pred, target=target, num_classes=num_classes)
precision = class_reduce(tps, tps + fps, sups, class_reduction=class_reduction)
recall = class_reduce(tps, tps + fns, sups, class_reduction=class_reduction)
if return_state:
return {'tps': tps, 'fps': fps, 'fns': fns, 'sups': sups}
if return_support:
return precision, recall, sups
return precision, recall
def precision(
pred: torch.Tensor,
target: torch.Tensor,
num_classes: Optional[int] = None,
class_reduction: str = 'micro',
) -> torch.Tensor:
"""
Computes precision score.
Args:
pred: estimated probabilities
target: ground-truth labels
num_classes: number of classes
class_reduction: method to reduce metric score over labels
- ``'micro'``: calculate metrics globally (default)
- ``'macro'``: calculate metrics for each label, and find their unweighted mean.
- ``'weighted'``: calculate metrics for each label, and find their weighted mean.
- ``'none'``: returns calculated metric per class
Return:
Tensor with precision.
Example:
>>> x = torch.tensor([0, 1, 2, 3])
>>> y = torch.tensor([0, 1, 2, 2])
>>> precision(x, y)
tensor(0.7500)
"""
return precision_recall(pred=pred, target=target,
num_classes=num_classes, class_reduction=class_reduction)[0]
def recall(
pred: torch.Tensor,
target: torch.Tensor,
num_classes: Optional[int] = None,
class_reduction: str = 'micro',
) -> torch.Tensor:
"""
Computes recall score.
Args:
pred: estimated probabilities
target: ground-truth labels
num_classes: number of classes
class_reduction: method to reduce metric score over labels
- ``'micro'``: calculate metrics globally (default)
- ``'macro'``: calculate metrics for each label, and find their unweighted mean.
- ``'weighted'``: calculate metrics for each label, and find their weighted mean.
- ``'none'``: returns calculated metric per class
Return:
Tensor with recall.
Example:
>>> x = torch.tensor([0, 1, 2, 3])
>>> y = torch.tensor([0, 1, 2, 2])
>>> recall(x, y)
tensor(0.7500)
"""
return precision_recall(pred=pred, target=target,
num_classes=num_classes, class_reduction=class_reduction)[1]
def fbeta_score(
pred: torch.Tensor,
target: torch.Tensor,
beta: float,
num_classes: Optional[int] = None,
class_reduction: str = 'micro',
) -> torch.Tensor:
"""
Computes the F-beta score which is a weighted harmonic mean of precision and recall.
It ranges between 1 and 0, where 1 is perfect and the worst value is 0.
Args:
pred: estimated probabilities
target: ground-truth labels
beta: weights recall when combining the score.
beta < 1: more weight to precision.
beta > 1 more weight to recall
beta = 0: only precision
beta -> inf: only recall
num_classes: number of classes
class_reduction: method to reduce metric score over labels
- ``'micro'``: calculate metrics globally (default)
- ``'macro'``: calculate metrics for each label, and find their unweighted mean.
- ``'weighted'``: calculate metrics for each label, and find their weighted mean.
- ``'none'``: returns calculated metric per class
Return:
Tensor with the value of F-score. It is a value between 0-1.
Example:
>>> x = torch.tensor([0, 1, 2, 3])
>>> y = torch.tensor([0, 1, 2, 2])
>>> fbeta_score(x, y, 0.2)
tensor(0.7500)
"""
# We need to differentiate at which point to do class reduction
intermidiate_reduction = 'none' if class_reduction != "micro" else 'micro'
prec, rec, sups = precision_recall(pred=pred, target=target,
num_classes=num_classes,
class_reduction=intermidiate_reduction,
return_support=True)
num = (1 + beta ** 2) * prec * rec
denom = ((beta ** 2) * prec + rec)
if intermidiate_reduction == 'micro':
return torch.sum(num) / torch.sum(denom)
return class_reduce(num, denom, sups, class_reduction=class_reduction)
def f1_score(
pred: torch.Tensor,
target: torch.Tensor,
num_classes: Optional[int] = None,
class_reduction: str = 'micro',
) -> torch.Tensor:
"""
Computes the F1-score (a.k.a F-measure), which is the harmonic mean of the precision and recall.
It ranges between 1 and 0, where 1 is perfect and the worst value is 0.
Args:
pred: estimated probabilities
target: ground-truth labels
num_classes: number of classes
class_reduction: method to reduce metric score over labels
- ``'micro'``: calculate metrics globally (default)
- ``'macro'``: calculate metrics for each label, and find their unweighted mean.
- ``'weighted'``: calculate metrics for each label, and find their weighted mean.
- ``'none'``: returns calculated metric per class
Return:
Tensor containing F1-score
Example:
>>> x = torch.tensor([0, 1, 2, 3])
>>> y = torch.tensor([0, 1, 2, 2])
>>> f1_score(x, y)
tensor(0.7500)
"""
return fbeta_score(pred=pred, target=target, beta=1.,
num_classes=num_classes, class_reduction=class_reduction)
def _binary_clf_curve(
pred: torch.Tensor,
target: torch.Tensor,
sample_weight: Optional[Sequence] = None,
pos_label: int = 1.,
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
"""
adapted from https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/metrics/_ranking.py
"""
if sample_weight is not None and not isinstance(sample_weight, torch.Tensor):
sample_weight = torch.tensor(sample_weight, device=pred.device, dtype=torch.float)
# remove class dimension if necessary
if pred.ndim > target.ndim:
pred = pred[:, 0]
desc_score_indices = torch.argsort(pred, descending=True)
pred = pred[desc_score_indices]
target = target[desc_score_indices]
if sample_weight is not None:
weight = sample_weight[desc_score_indices]
else:
weight = 1.
# pred typically has many tied values. Here we extract
# the indices associated with the distinct values. We also
# concatenate a value for the end of the curve.
distinct_value_indices = torch.where(pred[1:] - pred[:-1])[0]
threshold_idxs = F.pad(distinct_value_indices, (0, 1), value=target.size(0) - 1)
target = (target == pos_label).to(torch.long)
tps = torch.cumsum(target * weight, dim=0)[threshold_idxs]
if sample_weight is not None:
# express fps as a cumsum to ensure fps is increasing even in
# the presence of floating point errors
fps = torch.cumsum((1 - target) * weight, dim=0)[threshold_idxs]
else:
fps = 1 + threshold_idxs - tps
return fps, tps, pred[threshold_idxs]
def roc(
pred: torch.Tensor,
target: torch.Tensor,
sample_weight: Optional[Sequence] = None,
pos_label: int = 1.,
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
"""
Computes the Receiver Operating Characteristic (ROC). It assumes classifier is binary.
Args:
pred: estimated probabilities
target: ground-truth labels
sample_weight: sample weights
pos_label: the label for the positive class
Return:
false-positive rate (fpr), true-positive rate (tpr), thresholds
Example:
>>> x = torch.tensor([0, 1, 2, 3])
>>> y = torch.tensor([0, 1, 1, 1])
>>> fpr, tpr, thresholds = roc(x, y)
>>> fpr
tensor([0., 0., 0., 0., 1.])
>>> tpr
tensor([0.0000, 0.3333, 0.6667, 1.0000, 1.0000])
>>> thresholds
tensor([4, 3, 2, 1, 0])
"""
fps, tps, thresholds = _binary_clf_curve(pred=pred, target=target,
sample_weight=sample_weight,
pos_label=pos_label)
# Add an extra threshold position
# to make sure that the curve starts at (0, 0)
tps = torch.cat([torch.zeros(1, dtype=tps.dtype, device=tps.device), tps])
fps = torch.cat([torch.zeros(1, dtype=fps.dtype, device=fps.device), fps])
thresholds = torch.cat([thresholds[0][None] + 1, thresholds])
if fps[-1] <= 0:
raise ValueError("No negative samples in targets, false positive value should be meaningless")
fpr = fps / fps[-1]
if tps[-1] <= 0:
raise ValueError("No positive samples in targets, true positive value should be meaningless")
tpr = tps / tps[-1]
return fpr, tpr, thresholds
def multiclass_roc(
pred: torch.Tensor,
target: torch.Tensor,
sample_weight: Optional[Sequence] = None,
num_classes: Optional[int] = None,
) -> Tuple[Tuple[torch.Tensor, torch.Tensor, torch.Tensor]]:
"""
Computes the Receiver Operating Characteristic (ROC) for multiclass predictors.
Args:
pred: estimated probabilities
target: ground-truth labels
sample_weight: sample weights
num_classes: number of classes (default: None, computes automatically from data)
Return:
returns roc for each class.
Number of classes, false-positive rate (fpr), true-positive rate (tpr), thresholds
Example:
>>> pred = torch.tensor([[0.85, 0.05, 0.05, 0.05],
... [0.05, 0.85, 0.05, 0.05],
... [0.05, 0.05, 0.85, 0.05],
... [0.05, 0.05, 0.05, 0.85]])
>>> target = torch.tensor([0, 1, 3, 2])
>>> multiclass_roc(pred, target) # doctest: +NORMALIZE_WHITESPACE
((tensor([0., 0., 1.]), tensor([0., 1., 1.]), tensor([1.8500, 0.8500, 0.0500])),
(tensor([0., 0., 1.]), tensor([0., 1., 1.]), tensor([1.8500, 0.8500, 0.0500])),
(tensor([0.0000, 0.3333, 1.0000]), tensor([0., 0., 1.]), tensor([1.8500, 0.8500, 0.0500])),
(tensor([0.0000, 0.3333, 1.0000]), tensor([0., 0., 1.]), tensor([1.8500, 0.8500, 0.0500])))
"""
num_classes = get_num_classes(pred, target, num_classes)
class_roc_vals = []
for c in range(num_classes):
pred_c = pred[:, c]
class_roc_vals.append(roc(pred=pred_c, target=target,
sample_weight=sample_weight, pos_label=c))
return tuple(class_roc_vals)
def precision_recall_curve(
pred: torch.Tensor,
target: torch.Tensor,
sample_weight: Optional[Sequence] = None,
pos_label: int = 1.,
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
"""
Computes precision-recall pairs for different thresholds.
Args:
pred: estimated probabilities
target: ground-truth labels
sample_weight: sample weights
pos_label: the label for the positive class
Return:
precision, recall, thresholds
Example:
>>> pred = torch.tensor([0, 1, 2, 3])
>>> target = torch.tensor([0, 1, 1, 0])
>>> precision, recall, thresholds = precision_recall_curve(pred, target)
>>> precision
tensor([0.6667, 0.5000, 0.0000, 1.0000])
>>> recall
tensor([1.0000, 0.5000, 0.0000, 0.0000])
>>> thresholds
tensor([1, 2, 3])
"""
fps, tps, thresholds = _binary_clf_curve(pred=pred, target=target,
sample_weight=sample_weight,
pos_label=pos_label)
precision = tps / (tps + fps)
recall = tps / tps[-1]
# stop when full recall attained
# and reverse the outputs so recall is decreasing
last_ind = torch.where(tps == tps[-1])[0][0]
sl = slice(0, last_ind.item() + 1)
# need to call reversed explicitly, since including that to slice would
# introduce negative strides that are not yet supported in pytorch
precision = torch.cat([reversed(precision[sl]),
torch.ones(1, dtype=precision.dtype,
device=precision.device)])
recall = torch.cat([reversed(recall[sl]),
torch.zeros(1, dtype=recall.dtype,
device=recall.device)])
thresholds = torch.tensor(reversed(thresholds[sl]))
return precision, recall, thresholds
def multiclass_precision_recall_curve(
pred: torch.Tensor,
target: torch.Tensor,
sample_weight: Optional[Sequence] = None,
num_classes: Optional[int] = None,
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
"""
Computes precision-recall pairs for different thresholds given a multiclass scores.
Args:
pred: estimated probabilities
target: ground-truth labels
sample_weight: sample weight
num_classes: number of classes
Return:
number of classes, precision, recall, thresholds
Example:
>>> pred = torch.tensor([[0.85, 0.05, 0.05, 0.05],
... [0.05, 0.85, 0.05, 0.05],
... [0.05, 0.05, 0.85, 0.05],
... [0.05, 0.05, 0.05, 0.85]])
>>> target = torch.tensor([0, 1, 3, 2])
>>> nb_classes, precision, recall, thresholds = multiclass_precision_recall_curve(pred, target)
>>> nb_classes
(tensor([1., 1.]), tensor([1., 0.]), tensor([0.8500]))
>>> precision
(tensor([1., 1.]), tensor([1., 0.]), tensor([0.8500]))
>>> recall
(tensor([0.2500, 0.0000, 1.0000]), tensor([1., 0., 0.]), tensor([0.0500, 0.8500]))
>>> thresholds # doctest: +NORMALIZE_WHITESPACE
(tensor([0.2500, 0.0000, 1.0000]), tensor([1., 0., 0.]), tensor([0.0500, 0.8500]))
"""
num_classes = get_num_classes(pred, target, num_classes)
class_pr_vals = []
for c in range(num_classes):
pred_c = pred[:, c]
class_pr_vals.append(precision_recall_curve(
pred=pred_c,
target=target,
sample_weight=sample_weight, pos_label=c))
return tuple(class_pr_vals)
def auc(
x: torch.Tensor,
y: torch.Tensor,
reorder: bool = True
) -> torch.Tensor:
"""
Computes Area Under the Curve (AUC) using the trapezoidal rule
Args:
x: x-coordinates
y: y-coordinates
reorder: reorder coordinates, so they are increasing
Return:
Tensor containing AUC score (float)
Example:
>>> x = torch.tensor([0, 1, 2, 3])
>>> y = torch.tensor([0, 1, 2, 2])
>>> auc(x, y)
tensor(4.)
"""
direction = 1.
if reorder:
# can't use lexsort here since it is not implemented for torch
order = torch.argsort(x)
x, y = x[order], y[order]
else:
dx = x[1:] - x[:-1]
if (dx < 0).any():
if (dx, 0).all():
direction = -1.
else:
raise ValueError("Reordering is not turned on, and "
"the x array is not increasing: %s" % x)
return direction * torch.trapz(y, x)
def auc_decorator(reorder: bool = True) -> Callable:
def wrapper(func_to_decorate: Callable) -> Callable:
@wraps(func_to_decorate)
def new_func(*args, **kwargs) -> torch.Tensor:
x, y = func_to_decorate(*args, **kwargs)[:2]
return auc(x, y, reorder=reorder)
return new_func
return wrapper
def multiclass_auc_decorator(reorder: bool = True) -> Callable:
def wrapper(func_to_decorate: Callable) -> Callable:
def new_func(*args, **kwargs) -> torch.Tensor:
results = []
for class_result in func_to_decorate(*args, **kwargs):
x, y = class_result[:2]
results.append(auc(x, y, reorder=reorder))
return torch.cat(results)
return new_func
return wrapper
def auroc(
pred: torch.Tensor,
target: torch.Tensor,
sample_weight: Optional[Sequence] = None,
pos_label: int = 1.,
) -> torch.Tensor:
"""
Compute Area Under the Receiver Operating Characteristic Curve (ROC AUC) from prediction scores
Args:
pred: estimated probabilities
target: ground-truth labels
sample_weight: sample weights
pos_label: the label for the positive class
Return:
Tensor containing ROCAUC score
Example:
>>> x = torch.tensor([0, 1, 2, 3])
>>> y = torch.tensor([0, 1, 1, 0])
>>> auroc(x, y)
tensor(0.5000)
"""
if any(target > 1):
raise ValueError('AUROC metric is meant for binary classification, but'
' target tensor contains value different from 0 and 1.'
' Multiclass is currently not supported.')
@auc_decorator(reorder=True)
def _auroc(pred, target, sample_weight, pos_label):
return roc(pred, target, sample_weight, pos_label)
return _auroc(pred=pred, target=target, sample_weight=sample_weight, pos_label=pos_label)
def average_precision(
pred: torch.Tensor,
target: torch.Tensor,
sample_weight: Optional[Sequence] = None,
pos_label: int = 1.,
) -> torch.Tensor:
"""
Compute average precision from prediction scores
Args:
pred: estimated probabilities
target: ground-truth labels
sample_weight: sample weights
pos_label: the label for the positive class
Return:
Tensor containing average precision score
Example:
>>> x = torch.tensor([0, 1, 2, 3])
>>> y = torch.tensor([0, 1, 2, 2])
>>> average_precision(x, y)
tensor(0.3333)
"""
precision, recall, _ = precision_recall_curve(pred=pred, target=target,
sample_weight=sample_weight,
pos_label=pos_label)
# Return the step function integral
# The following works because the last entry of precision is
# guaranteed to be 1, as returned by precision_recall_curve
return -torch.sum((recall[1:] - recall[:-1]) * precision[:-1])
def dice_score(
pred: torch.Tensor,
target: torch.Tensor,
bg: bool = False,
nan_score: float = 0.0,
no_fg_score: float = 0.0,
reduction: str = 'elementwise_mean',
) -> torch.Tensor:
"""
Compute dice score from prediction scores
Args:
pred: estimated probabilities
target: ground-truth labels
bg: whether to also compute dice for the background
nan_score: score to return, if a NaN occurs during computation
no_fg_score: score to return, if no foreground pixel was found in target
reduction: a method to reduce metric score over labels.
- ``'elementwise_mean'``: takes the mean (default)
- ``'sum'``: takes the sum
- ``'none'``: no reduction will be applied
Return:
Tensor containing dice score
Example:
>>> pred = torch.tensor([[0.85, 0.05, 0.05, 0.05],
... [0.05, 0.85, 0.05, 0.05],
... [0.05, 0.05, 0.85, 0.05],
... [0.05, 0.05, 0.05, 0.85]])
>>> target = torch.tensor([0, 1, 3, 2])
>>> dice_score(pred, target)
tensor(0.3333)
"""
num_classes = pred.shape[1]
bg = (1 - int(bool(bg)))
scores = torch.zeros(num_classes - bg, device=pred.device, dtype=torch.float32)
for i in range(bg, num_classes):
if not (target == i).any():
# no foreground class
scores[i - bg] += no_fg_score
continue
tp, fp, tn, fn, sup = stat_scores(pred=pred, target=target, class_index=i)
denom = (2 * tp + fp + fn).to(torch.float)
# nan result
score_cls = (2 * tp).to(torch.float) / denom if torch.is_nonzero(denom) else nan_score
scores[i - bg] += score_cls
return reduce(scores, reduction=reduction)
def iou(
pred: torch.Tensor,
target: torch.Tensor,
ignore_index: Optional[int] = None,
absent_score: float = 0.0,
num_classes: Optional[int] = None,
reduction: str = 'elementwise_mean',
) -> torch.Tensor:
"""
Intersection over union, or Jaccard index calculation.
Args:
pred: Tensor containing predictions
target: Tensor containing targets
ignore_index: optional int specifying a target class to ignore. If given, this class index does not contribute
to the returned score, regardless of reduction method. Has no effect if given an int that is not in the
range [0, num_classes-1], where num_classes is either given or derived from pred and target. By default, no
index is ignored, and all classes are used.
absent_score: score to use for an individual class, if no instances of the class index were present in
`pred` AND no instances of the class index were present in `target`. For example, if we have 3 classes,
[0, 0] for `pred`, and [0, 2] for `target`, then class 1 would be assigned the `absent_score`. Default is
0.0.
num_classes: Optionally specify the number of classes
reduction: a method to reduce metric score over labels.
- ``'elementwise_mean'``: takes the mean (default)
- ``'sum'``: takes the sum
- ``'none'``: no reduction will be applied
Return:
IoU score : Tensor containing single value if reduction is
'elementwise_mean', or number of classes if reduction is 'none'
Example:
>>> target = torch.randint(0, 1, (10, 25, 25))
>>> pred = torch.tensor(target)
>>> pred[2:5, 7:13, 9:15] = 1 - pred[2:5, 7:13, 9:15]
>>> iou(pred, target)
tensor(0.4914)
"""
num_classes = get_num_classes(pred=pred, target=target, num_classes=num_classes)
tps, fps, tns, fns, sups = stat_scores_multiple_classes(pred, target, num_classes)
scores = torch.zeros(num_classes, device=pred.device, dtype=torch.float32)
for class_idx in range(num_classes):
if class_idx == ignore_index:
continue
tp = tps[class_idx]
fp = fps[class_idx]
fn = fns[class_idx]
sup = sups[class_idx]
# If this class is absent in the target (no support) AND absent in the pred (no true or false
# positives), then use the absent_score for this class.
if sup + tp + fp == 0:
scores[class_idx] = absent_score
continue
denom = tp + fp + fn
# Note that we do not need to worry about division-by-zero here since we know (sup + tp + fp != 0) from above,
# which means ((tp+fn) + tp + fp != 0), which means (2tp + fp + fn != 0). Since all vars are non-negative, we
# can conclude (tp + fp + fn > 0), meaning the denominator is non-zero for each class.
score = tp.to(torch.float) / denom
scores[class_idx] = score
# Remove the ignored class index from the scores.
if ignore_index is not None and ignore_index >= 0 and ignore_index < num_classes:
scores = torch.cat([
scores[:ignore_index],
scores[ignore_index + 1:],
])
return reduce(scores, reduction=reduction)