lightning/pytorch_lightning/core/optimizer.py

220 lines
7.7 KiB
Python

# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from contextlib import contextmanager
from typing import Callable, Optional
from weakref import proxy
from torch.optim import Optimizer
from pytorch_lightning.utilities import AMPType
from pytorch_lightning.utilities.exceptions import MisconfigurationException
def is_lightning_optimizer(optimizer):
return isinstance(optimizer, LightningOptimizer)
def do_nothing_closure():
return
class LightningOptimizer:
"""
This class is used to wrap the user optimizers and handle properly
the backward and optimizer_step logic across accelerators, AMP, accumulate_grad_batches
"""
def __init__(self, optimizer: Optimizer):
self.__dict__ = {k: v for k, v in optimizer.__dict__.items() if k not in ('step', "__del__")}
# For Horovod
if hasattr(optimizer, "skip_synchronize"):
self.__class__ = type(
"Lightning" + optimizer.__class__.__name__, (self.__class__, optimizer.__class__.__bases__[0]), {}
)
self.skip_synchronize = optimizer.skip_synchronize
self.synchronize = optimizer.synchronize
else:
self.__class__ = type("Lightning" + optimizer.__class__.__name__, (self.__class__, optimizer.__class__), {})
self._optimizer = optimizer
self._trainer = None
self._optimizer_idx = None
self._total_optimizer_step_calls = 0
@property
def optimizer(self):
return self._optimizer
@property
def defaults(self):
return self._optimizer.defaults
@defaults.setter
def defaults(self, defaults):
self._optimizer.defaults = defaults
@property
def state(self):
return self._optimizer.state
@state.setter
def state(self, state):
self._optimizer.state = state
@property
def param_groups(self):
return self._optimizer.param_groups
@param_groups.setter
def param_groups(self, param_groups):
self._optimizer.param_groups = param_groups
def _on_trainer_init(self, trainer):
self._trainer = proxy(trainer)
for opt_idx, opt in enumerate(trainer.optimizers):
if opt == self._optimizer:
self._optimizer_idx = opt_idx
break
@classmethod
def _to_lightning_optimizer(cls, optimizer, trainer, opt_idx):
# apex overrides .step function and need to be wrapped on each step
if trainer.amp_backend == AMPType.APEX:
optimizer = cls(optimizer)
optimizer._on_trainer_init(trainer)
else:
optimizer = trainer.lightning_optimizers[opt_idx]
return optimizer
def _toggle_model(self):
model_ref = self._trainer.lightning_module
model_ref.toggle_optimizer(self, self._optimizer_idx)
def _untoggle_model(self):
model_ref = self._trainer.lightning_module
model_ref.untoggle_optimizer(self)
@contextmanager
def toggle_model(self, sync_grad: bool = True):
"""
This function is just a helper for advanced users.
Considering the current optimizer as A and all other optimizers as B.
Toggling means all parameters from B exclusive to A will have ``requires_grad`` set to False.
When performing gradient accumulation, there is no need to perform grad synchronization
during the accumulation phase.
Setting `sync_grad` to False will block this synchronization and improve performance.
"""
with self._trainer.fit_loop.epoch_loop.batch_loop.block_ddp_sync_behaviour(not sync_grad):
self._toggle_model()
yield
self._untoggle_model()
def __optimizer_step(self, closure: Optional[Callable] = None, profiler_name: str = None, **kwargs):
trainer = self._trainer
optimizer = self._optimizer
with trainer.profiler.profile(profiler_name):
trainer.accelerator.optimizer_step(optimizer, self._optimizer_idx, lambda_closure=closure, **kwargs)
def step(self, *args, closure: Optional[Callable] = None, **kwargs):
"""
Call this directly from your training_step when doing optimizations manually.
By using this we can ensure that all the proper scaling when using 16-bit, accelerator etc
is been done properly for you.
.. note:: In Manual Optimization, the user is expected to know when to call zero_grad,
perform accumulated_grad_batches, etc ... Lightning will only take care of precision and accelerators
Args:
closure: One could provide its own optimizer_closure. Set to None by default.
args: Any parameters provided to wrapped optimizer.step()
kwargs: Any parameters provided to wrapped optimizer.step()
Example::
# Scenario for a GAN.
def training_step(...):
opt_gen, opt_dis = self.optimizers()
...
# compute generator loss
loss_gen = self.compute_generator_loss(...)
# zero_grad needs to be called before backward
opt_gen.zero_grad()
self.manual_backward(loss_gen)
opt_gen.step()
# compute discriminator loss
loss_dis = self.compute_discriminator_loss(...)
# zero_grad needs to be called before backward
opt_dis.zero_grad()
self.manual_backward(loss_dis)
opt_dis.step()
# Scenario for a GAN advanced
def training_step(self, batch, batch_idx, ...):
opt_gen, opt_dis = self.optimizers()
...
accumulated_grad_batches = batch_idx % 2 == 0
# compute generator loss
def closure_gen():
loss_gen = self.compute_generator_loss(...)
self.manual_backward(loss_gen)
if accumulated_grad_batches:
opt_gen.zero_grad()
with opt_gen.toggle_model(sync_grad=accumulated_grad_batches):
opt_gen.step(closure=closure_gen)
def closure_dis():
loss_dis = self.compute_discriminator_loss(...)
self.manual_backward(loss_dis)
if accumulated_grad_batches:
opt_dis.zero_grad()
with opt_dis.toggle_model(sync_grad=accumulated_grad_batches):
opt_dis.step(closure=closure_dis)
"""
if closure is None:
profiler_name = "closure_{self._optimizer_idx}"
closure = do_nothing_closure
else:
if not callable(closure):
raise MisconfigurationException("When closure is provided, it should be a function")
profiler_name = f"optimizer_step_and_closure_{self._optimizer_idx}"
self.__optimizer_step(*args, closure=closure, profiler_name=profiler_name, **kwargs)
self._total_optimizer_step_calls += 1
def __repr__(self):
groups = [{k: round(v, 12) if isinstance(v, float) else v
for k, v in sorted(group.items()) if k != "params"} for group in self.param_groups]
return f"{self.__class__.__name__}(groups={groups})"