352 lines
13 KiB
Python
352 lines
13 KiB
Python
# Copyright The PyTorch Lightning team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import operator
|
|
import os
|
|
from collections import namedtuple
|
|
from unittest import mock
|
|
from unittest.mock import patch
|
|
|
|
import pytest
|
|
import torch
|
|
|
|
import tests.helpers.pipelines as tpipes
|
|
import tests.helpers.utils as tutils
|
|
from pytorch_lightning import Trainer
|
|
from pytorch_lightning.plugins.environments import TorchElasticEnvironment
|
|
from pytorch_lightning.utilities import device_parser
|
|
from pytorch_lightning.utilities.exceptions import MisconfigurationException
|
|
from pytorch_lightning.utilities.imports import _compare_version
|
|
from tests.helpers import BoringModel
|
|
from tests.helpers.datamodules import ClassifDataModule
|
|
from tests.helpers.imports import Batch, Dataset, Example, Field, LabelField
|
|
from tests.helpers.runif import RunIf
|
|
from tests.helpers.simple_models import ClassificationModel
|
|
|
|
PL_VERSION_LT_1_5 = _compare_version("pytorch_lightning", operator.lt, "1.5")
|
|
PRETEND_N_OF_GPUS = 16
|
|
|
|
|
|
@RunIf(min_gpus=2)
|
|
def test_multi_gpu_none_backend(tmpdir):
|
|
"""Make sure when using multiple GPUs the user can't use `accelerator = None`."""
|
|
tutils.set_random_main_port()
|
|
trainer_options = dict(
|
|
default_root_dir=tmpdir,
|
|
enable_progress_bar=False,
|
|
max_epochs=1,
|
|
limit_train_batches=0.2,
|
|
limit_val_batches=0.2,
|
|
gpus=2,
|
|
)
|
|
|
|
dm = ClassifDataModule()
|
|
model = ClassificationModel()
|
|
tpipes.run_model_test(trainer_options, model, dm)
|
|
|
|
|
|
@RunIf(min_gpus=2)
|
|
@pytest.mark.parametrize("gpus", [1, [0], [1]])
|
|
def test_single_gpu_model(tmpdir, gpus):
|
|
"""Make sure single GPU works (DP mode)."""
|
|
trainer_options = dict(
|
|
default_root_dir=tmpdir,
|
|
enable_progress_bar=False,
|
|
max_epochs=1,
|
|
limit_train_batches=0.1,
|
|
limit_val_batches=0.1,
|
|
gpus=gpus,
|
|
)
|
|
|
|
model = BoringModel()
|
|
tpipes.run_model_test(trainer_options, model)
|
|
|
|
|
|
@pytest.fixture
|
|
def mocked_device_count(monkeypatch):
|
|
def device_count():
|
|
return PRETEND_N_OF_GPUS
|
|
|
|
def is_available():
|
|
return True
|
|
|
|
monkeypatch.setattr(torch.cuda, "is_available", is_available)
|
|
monkeypatch.setattr(torch.cuda, "device_count", device_count)
|
|
|
|
|
|
@pytest.fixture
|
|
def mocked_device_count_0(monkeypatch):
|
|
def device_count():
|
|
return 0
|
|
|
|
monkeypatch.setattr(torch.cuda, "device_count", device_count)
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
["gpus", "expected_num_gpus", "strategy"],
|
|
[
|
|
pytest.param(None, 0, None, id="None - expect 0 gpu to use."),
|
|
pytest.param(0, 0, None, id="Oth gpu, expect 1 gpu to use."),
|
|
pytest.param(1, 1, None, id="1st gpu, expect 1 gpu to use."),
|
|
pytest.param(-1, PRETEND_N_OF_GPUS, "ddp", id="-1 - use all gpus"),
|
|
pytest.param("-1", PRETEND_N_OF_GPUS, "ddp", id="'-1' - use all gpus"),
|
|
pytest.param(3, 3, "ddp", id="3rd gpu - 1 gpu to use (backend:ddp)"),
|
|
],
|
|
)
|
|
def test_trainer_gpu_parse(mocked_device_count, gpus, expected_num_gpus, strategy):
|
|
assert Trainer(gpus=gpus, strategy=strategy).num_gpus == expected_num_gpus
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
["gpus", "expected_num_gpus", "strategy"],
|
|
[
|
|
pytest.param(None, 0, None, id="None - expect 0 gpu to use."),
|
|
pytest.param(None, 0, "ddp", id="None - expect 0 gpu to use."),
|
|
],
|
|
)
|
|
def test_trainer_num_gpu_0(mocked_device_count_0, gpus, expected_num_gpus, strategy):
|
|
assert Trainer(gpus=gpus, strategy=strategy).num_gpus == expected_num_gpus
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
["gpus", "expected_root_gpu", "strategy"],
|
|
[
|
|
pytest.param(None, None, "ddp", id="None is None"),
|
|
pytest.param(0, None, "ddp", id="O gpus, expect gpu root device to be None."),
|
|
pytest.param(1, 0, "ddp", id="1 gpu, expect gpu root device to be 0."),
|
|
pytest.param(-1, 0, "ddp", id="-1 - use all gpus, expect gpu root device to be 0."),
|
|
pytest.param("-1", 0, "ddp", id="'-1' - use all gpus, expect gpu root device to be 0."),
|
|
pytest.param(3, 0, "ddp", id="3 gpus, expect gpu root device to be 0.(backend:ddp)"),
|
|
],
|
|
)
|
|
def test_root_gpu_property(mocked_device_count, gpus, expected_root_gpu, strategy):
|
|
assert Trainer(gpus=gpus, strategy=strategy).root_gpu == expected_root_gpu
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
["gpus", "expected_root_gpu", "strategy"],
|
|
[
|
|
pytest.param(None, None, None, id="None is None"),
|
|
pytest.param(None, None, "ddp", id="None is None"),
|
|
pytest.param(0, None, "ddp", id="None is None"),
|
|
],
|
|
)
|
|
def test_root_gpu_property_0_passing(mocked_device_count_0, gpus, expected_root_gpu, strategy):
|
|
assert Trainer(gpus=gpus, strategy=strategy).root_gpu == expected_root_gpu
|
|
|
|
|
|
# Asking for a gpu when non are available will result in a MisconfigurationException
|
|
@pytest.mark.parametrize(
|
|
["gpus", "expected_root_gpu", "strategy"],
|
|
[
|
|
(1, None, "ddp"),
|
|
(3, None, "ddp"),
|
|
(3, None, "ddp"),
|
|
([1, 2], None, "ddp"),
|
|
([0, 1], None, "ddp"),
|
|
(-1, None, "ddp"),
|
|
("-1", None, "ddp"),
|
|
],
|
|
)
|
|
def test_root_gpu_property_0_raising(mocked_device_count_0, gpus, expected_root_gpu, strategy):
|
|
with pytest.raises(MisconfigurationException):
|
|
Trainer(gpus=gpus, strategy=strategy)
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
["gpus", "expected_root_gpu"],
|
|
[
|
|
pytest.param(None, None, id="No gpus, expect gpu root device to be None"),
|
|
pytest.param([0], 0, id="Oth gpu, expect gpu root device to be 0."),
|
|
pytest.param([1], 1, id="1st gpu, expect gpu root device to be 1."),
|
|
pytest.param([3], 3, id="3rd gpu, expect gpu root device to be 3."),
|
|
pytest.param([1, 2], 1, id="[1, 2] gpus, expect gpu root device to be 1."),
|
|
],
|
|
)
|
|
def test_determine_root_gpu_device(gpus, expected_root_gpu):
|
|
assert device_parser.determine_root_gpu_device(gpus) == expected_root_gpu
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
["gpus", "expected_gpu_ids"],
|
|
[
|
|
(None, None),
|
|
(0, None),
|
|
(1, [0]),
|
|
(3, [0, 1, 2]),
|
|
pytest.param(-1, list(range(PRETEND_N_OF_GPUS)), id="-1 - use all gpus"),
|
|
([0], [0]),
|
|
([1, 3], [1, 3]),
|
|
((1, 3), [1, 3]),
|
|
("0", None),
|
|
("3", [0, 1, 2]),
|
|
("1, 3", [1, 3]),
|
|
("2,", [2]),
|
|
pytest.param("-1", list(range(PRETEND_N_OF_GPUS)), id="'-1' - use all gpus"),
|
|
],
|
|
)
|
|
def test_parse_gpu_ids(mocked_device_count, gpus, expected_gpu_ids):
|
|
assert device_parser.parse_gpu_ids(gpus) == expected_gpu_ids
|
|
|
|
|
|
@pytest.mark.parametrize("gpus", [0.1, -2, False, [], [-1], [None], ["0"], [0, 0]])
|
|
def test_parse_gpu_fail_on_unsupported_inputs(mocked_device_count, gpus):
|
|
with pytest.raises(MisconfigurationException):
|
|
device_parser.parse_gpu_ids(gpus)
|
|
|
|
|
|
@pytest.mark.parametrize("gpus", [[1, 2, 19], -1, "-1"])
|
|
def test_parse_gpu_fail_on_non_existent_id(mocked_device_count_0, gpus):
|
|
with pytest.raises(MisconfigurationException):
|
|
device_parser.parse_gpu_ids(gpus)
|
|
|
|
|
|
def test_parse_gpu_fail_on_non_existent_id_2(mocked_device_count):
|
|
with pytest.raises(MisconfigurationException):
|
|
device_parser.parse_gpu_ids([1, 2, 19])
|
|
|
|
|
|
@pytest.mark.parametrize("gpus", [-1, "-1"])
|
|
def test_parse_gpu_returns_none_when_no_devices_are_available(mocked_device_count_0, gpus):
|
|
with pytest.raises(MisconfigurationException):
|
|
device_parser.parse_gpu_ids(gpus)
|
|
|
|
|
|
@mock.patch.dict(
|
|
os.environ,
|
|
{
|
|
"CUDA_VISIBLE_DEVICES": "0",
|
|
"LOCAL_RANK": "1",
|
|
"GROUP_RANK": "1",
|
|
"RANK": "3",
|
|
"WORLD_SIZE": "4",
|
|
"LOCAL_WORLD_SIZE": "2",
|
|
},
|
|
)
|
|
@mock.patch("torch.cuda.device_count", return_value=1)
|
|
@pytest.mark.parametrize("gpus", [[0, 1, 2], 2, "0"])
|
|
def test_torchelastic_gpu_parsing(mocked_device_count, gpus):
|
|
"""Ensure when using torchelastic and nproc_per_node is set to the default of 1 per GPU device That we omit
|
|
sanitizing the gpus as only one of the GPUs is visible."""
|
|
trainer = Trainer(gpus=gpus)
|
|
assert isinstance(trainer._accelerator_connector.cluster_environment, TorchElasticEnvironment)
|
|
assert trainer._accelerator_connector.parallel_device_ids == device_parser.parse_gpu_ids(gpus)
|
|
assert trainer.gpus == gpus
|
|
|
|
|
|
@RunIf(min_gpus=1)
|
|
def test_single_gpu_batch_parse():
|
|
trainer = Trainer(gpus=1)
|
|
|
|
# non-transferrable types
|
|
primitive_objects = [None, {}, [], 1.0, "x", [None, 2], {"x": (1, 2), "y": None}]
|
|
for batch in primitive_objects:
|
|
data = trainer.accelerator.batch_to_device(batch, torch.device("cuda:0"))
|
|
assert data == batch
|
|
|
|
# batch is just a tensor
|
|
batch = torch.rand(2, 3)
|
|
batch = trainer.accelerator.batch_to_device(batch, torch.device("cuda:0"))
|
|
assert batch.device.index == 0 and batch.type() == "torch.cuda.FloatTensor"
|
|
|
|
# tensor list
|
|
batch = [torch.rand(2, 3), torch.rand(2, 3)]
|
|
batch = trainer.accelerator.batch_to_device(batch, torch.device("cuda:0"))
|
|
assert batch[0].device.index == 0 and batch[0].type() == "torch.cuda.FloatTensor"
|
|
assert batch[1].device.index == 0 and batch[1].type() == "torch.cuda.FloatTensor"
|
|
|
|
# tensor list of lists
|
|
batch = [[torch.rand(2, 3), torch.rand(2, 3)]]
|
|
batch = trainer.accelerator.batch_to_device(batch, torch.device("cuda:0"))
|
|
assert batch[0][0].device.index == 0 and batch[0][0].type() == "torch.cuda.FloatTensor"
|
|
assert batch[0][1].device.index == 0 and batch[0][1].type() == "torch.cuda.FloatTensor"
|
|
|
|
# tensor dict
|
|
batch = [{"a": torch.rand(2, 3), "b": torch.rand(2, 3)}]
|
|
batch = trainer.accelerator.batch_to_device(batch, torch.device("cuda:0"))
|
|
assert batch[0]["a"].device.index == 0 and batch[0]["a"].type() == "torch.cuda.FloatTensor"
|
|
assert batch[0]["b"].device.index == 0 and batch[0]["b"].type() == "torch.cuda.FloatTensor"
|
|
|
|
# tuple of tensor list and list of tensor dict
|
|
batch = ([torch.rand(2, 3) for _ in range(2)], [{"a": torch.rand(2, 3), "b": torch.rand(2, 3)} for _ in range(2)])
|
|
batch = trainer.accelerator.batch_to_device(batch, torch.device("cuda:0"))
|
|
assert batch[0][0].device.index == 0 and batch[0][0].type() == "torch.cuda.FloatTensor"
|
|
|
|
assert batch[1][0]["a"].device.index == 0
|
|
assert batch[1][0]["a"].type() == "torch.cuda.FloatTensor"
|
|
|
|
assert batch[1][0]["b"].device.index == 0
|
|
assert batch[1][0]["b"].type() == "torch.cuda.FloatTensor"
|
|
|
|
# namedtuple of tensor
|
|
BatchType = namedtuple("BatchType", ["a", "b"])
|
|
batch = [BatchType(a=torch.rand(2, 3), b=torch.rand(2, 3)) for _ in range(2)]
|
|
batch = trainer.accelerator.batch_to_device(batch, torch.device("cuda:0"))
|
|
assert batch[0].a.device.index == 0
|
|
assert batch[0].a.type() == "torch.cuda.FloatTensor"
|
|
|
|
# non-Tensor that has `.to()` defined
|
|
class CustomBatchType:
|
|
def __init__(self):
|
|
self.a = torch.rand(2, 2)
|
|
|
|
def to(self, *args, **kwargs):
|
|
self.a = self.a.to(*args, **kwargs)
|
|
return self
|
|
|
|
batch = trainer.accelerator.batch_to_device(CustomBatchType(), torch.device("cuda:0"))
|
|
assert batch.a.type() == "torch.cuda.FloatTensor"
|
|
|
|
# torchtext.data.Batch
|
|
samples = [
|
|
{"text": "PyTorch Lightning is awesome!", "label": 0},
|
|
{"text": "Please make it work with torchtext", "label": 1},
|
|
]
|
|
|
|
text_field = Field()
|
|
label_field = LabelField()
|
|
fields = {"text": ("text", text_field), "label": ("label", label_field)}
|
|
|
|
examples = [Example.fromdict(sample, fields) for sample in samples]
|
|
dataset = Dataset(examples=examples, fields=fields.values())
|
|
|
|
# Batch runs field.process() that numericalizes tokens, but it requires to build dictionary first
|
|
text_field.build_vocab(dataset)
|
|
label_field.build_vocab(dataset)
|
|
|
|
batch = Batch(data=examples, dataset=dataset)
|
|
batch = trainer.accelerator.batch_to_device(batch, torch.device("cuda:0"))
|
|
|
|
assert batch.text.type() == "torch.cuda.LongTensor"
|
|
assert batch.label.type() == "torch.cuda.LongTensor"
|
|
|
|
|
|
@RunIf(min_gpus=1)
|
|
def test_non_blocking():
|
|
"""Tests that non_blocking=True only gets passed on torch.Tensor.to, but not on other objects."""
|
|
trainer = Trainer()
|
|
|
|
batch = torch.zeros(2, 3)
|
|
with patch.object(batch, "to", wraps=batch.to) as mocked:
|
|
batch = trainer.accelerator.batch_to_device(batch, torch.device("cuda:0"))
|
|
mocked.assert_called_with(torch.device("cuda", 0), non_blocking=True)
|
|
|
|
class BatchObject:
|
|
def to(self, *args, **kwargs):
|
|
pass
|
|
|
|
batch = BatchObject()
|
|
with patch.object(batch, "to", wraps=batch.to) as mocked:
|
|
batch = trainer.accelerator.batch_to_device(batch, torch.device("cuda:0"))
|
|
mocked.assert_called_with(torch.device("cuda", 0))
|