e2b1967b38 | ||
---|---|---|
.. | ||
basic_examples | ||
domain_templates | ||
ipu_examples | ||
loop_examples | ||
README.md | ||
__init__.py | ||
bug_report_model.py | ||
run_examples.sh | ||
test_examples.py |
README.md
Examples
Our most robust examples showing all sorts of implementations can be found in our sister library Lightning Bolts.
Basic examples
In this folder we add several starter examples:
- MNIST Classifier: Shows how to define the model inside the
LightningModule
. - Image Classifier: Trains arbitrary datasets with arbitrary backbones.
- Autoencoder: Shows how the
LightningModule
can be used as a system. - Profiler: Shows the basic usage of the PyTorch profilers and how to inspect traces in Google Chrome.
- Image Classifier with DALI: Shows how to use NVIDIA DALI with Lightning.
- Mnist Datamodule: Shows how to define a simple
LightningDataModule
using the MNIST dataset.
Domain examples
This folder contains older examples. You should instead use the examples in Lightning Bolts for advanced use cases.
Loop examples
Contains implementations leveraging loop customization to enhance the Trainer with new optimization routines.
- K-fold Cross Validation Loop: Implemenation of cross validation in a loop and special datamodule.
- Yield Loop: Enables yielding from the training_step like in a Python generator. Useful for automatic optimization with multiple optimizers.