787f523a71 | ||
---|---|---|
docs | ||
pytorch_lightning | ||
.gitignore | ||
COPYING | ||
MANIFEST.in | ||
README.md | ||
pyproject.toml | ||
requirements.txt | ||
setup.cfg | ||
setup.py | ||
update.sh |
README.md
Pytorch Lightning
The Keras for ML researchers using PyTorch. More control. Less boilerplate.
pip install pytorch-lightning
Docs
In progress. Documenting now!
Disclaimer
This is a research tool I built for myself internally while doing my PhD. The API is not 100% production quality, but my hope is that by open-sourcing, we can all get it there (I don't have too much time nowadays to write production-level code).
What is it?
Keras is too abstract for researchers. Lightning makes it so you only have to define your model but still control all details of training if you need to.
Pytorch
<-- Lightning
Your model.
Lightning will do the following for you:
- Run the training loop.
- Run the validation loop.
- Run the testing loop.
- Early stopping.
- Learning rate annealing.
- Can train complex models like GANs or anything with multiple optimizers.
- Weight checkpointing.
- Model saving.
- Model loading.
- Log training details (through test-tube).
- Run training on multiple GPUs (through test-tube).
- Run training on a GPU cluster managed by SLURM (through test-tube).
- Distribute memory-bound models on multiple GPUs.
- Give your model hyperparameters parsed from the command line OR a JSON file.
- Run your model in a dev environment where nothing logs.
Usage
To use lightning do 2 things:
- Define a trainer (which will run ALL your models).
- Define a model.
Quick demo
Run the following demo to see how it works:
# install lightning
pip install pytorch-lightning
# clone lightning for the demo
git clone https://github.com/williamFalcon/pytorch-lightning.git
cd pytorch-lightning/docs/source/examples
# run demo (on cpu)
python fully_featured_trainer.py
Without changing the model AT ALL, you can run the model on a single gpu, over multiple gpus, or over multiple nodes.
# run a grid search on two gpus
python fully_featured_trainer.py --gpus "0;1"
# run single model on multiple gpus
python fully_featured_trainer.py --gpus "0;1" --interactive
Basic trainer example
See this demo for a more robust trainer example.
import os
import sys
from test_tube import HyperOptArgumentParser, Experiment
from pytorch_lightning.models.trainer import Trainer
from pytorch_lightning.utils.arg_parse import add_default_args
from pytorch_lightning.utils.pt_callbacks import EarlyStopping, ModelCheckpoint
from demo.example_model import ExampleModel
def main(hparams):
"""
Main training routine specific for this project
:param hparams:
:return:
"""
# init experiment
exp = Experiment(
name=hparams.tt_name,
debug=hparams.debug,
save_dir=hparams.tt_save_path,
version=hparams.hpc_exp_number,
autosave=False,
description=hparams.tt_description
)
exp.argparse(hparams)
exp.save()
model_save_path = '{}/{}/{}'.format(hparams.model_save_path, exp.name, exp.version)
# build model
model = ExampleModel(hparams)
# callbacks
early_stop = EarlyStopping(monitor='val_acc', patience=3, mode='min', verbose=True)
checkpoint = ModelCheckpoint(filepath=model_save_path, save_function=None, save_best_only=True, verbose=True, monitor='val_acc', mode='min')
# configure trainer
trainer = Trainer(experiment=exp, checkpoint_callback=checkpoint, early_stop_callback=early_stop)
# train model
trainer.fit(model)
if __name__ == '__main__':
# use default args given by lightning
root_dir = os.path.split(os.path.dirname(sys.modules['__main__'].__file__))[0]
parent_parser = HyperOptArgumentParser(strategy='random_search', add_help=False)
add_default_args(parent_parser, root_dir)
# allow model to overwrite or extend args
parser = ExampleModel.add_model_specific_args(parent_parser)
hyperparams = parser.parse_args()
# train model
main(hyperparams)
Basic model example
Here we only show the method signatures. It's up to you to define the content.
from torch import nn
class My_Model(RootModule):
def __init__(self):
# define model
self.l1 = nn.Linear(200, 10)
# ---------------
# TRAINING
def training_step(self, data_batch):
x, y = data_batch
y_hat = self.l1(x)
loss = some_loss(y_hat)
return loss_val, {'train_loss': loss}
def validation_step(self, data_batch):
x, y = data_batch
y_hat = self.l1(x)
loss = some_loss(y_hat)
return loss_val, {'val_loss': loss}
def validation_end(self, outputs):
total_accs = []
for output in outputs:
total_accs.append(output['val_acc'].item())
# return a dict
return {'total_acc': np.mean(total_accs)}
# ---------------
# SAVING
def get_save_dict(self):
# lightning saves for you. Here's your chance to say what you want to save
checkpoint = {'state_dict': self.state_dict()}
return checkpoint
def load_model_specific(self, checkpoint):
# lightning loads for you. Here's your chance to say what you want to load
self.load_state_dict(checkpoint['state_dict'])
# ---------------
# TRAINING CONFIG
def configure_optimizers(self):
# give lightning the list of optimizers you want to use.
# lightning will call automatically
optimizer = self.choose_optimizer('adam', self.parameters(), {'lr': self.hparams.learning_rate}, 'optimizer')
return [optimizer]
@property
def tng_dataloader(self):
return pytorch_dataloader('train')
@property
def val_dataloader(self):
return pytorch_dataloader('val')
@property
def test_dataloader(self):
return pytorch_dataloader('test')
# ---------------
# MODIFY YOUR COMMAND LINE ARGS
@staticmethod
def add_model_specific_args(parent_parser):
parser = HyperOptArgumentParser(strategy=parent_parser.strategy, parents=[parent_parser])
parser.add_argument('--out_features', default=20)
return parser
Details
Model definition
Name | Description | Input | Return |
---|---|---|---|
training_step | Called with a batch of data during training | data from your dataloaders | tuple: scalar, dict |
validation_step | Called with a batch of data during validation | data from your dataloaders | tuple: scalar, dict |
validation_end | Collate metrics from all validation steps | outputs: array where each item is the output of a validation step | dict: for logging |
get_save_dict | called when your model needs to be saved (checkpoints, hpc save, etc...) | None | dict to be saved |
Model training
Name | Description | Input | Return |
---|---|---|---|
configure_optimizers | called during training setup | None | list: optimizers you want to use |
tng_dataloader | called during training | None | pytorch dataloader |
val_dataloader | called during validation | None | pytorch dataloader |
test_dataloader | called during testing | None | pytorch dataloader |
add_model_specific_args | called with args you defined in your main. This lets you tailor args for each model and keep main the same | argparse | argparse |
Model Saving/Loading
Name | Description | Input | Return |
---|---|---|---|
get_save_dict | called when your model needs to be saved (checkpoints, hpc save, etc...) | None | dict to be saved |
load_model_specific | called when loading a model | checkpoint: dict you created in get_save_dict | dict: modified in whatever way you want |
Optional model hooks.
Add these to the model whenever you want to configure training behavior.
Model lifecycle hooks
Use these hooks to customize functionality
Method | Purpose | Input | Output | Required |
---|---|---|---|---|
on_batch_start() | called right before the batch starts | - | - | N |
on_batch_end() | called right after the batch ends | - | - | N |
on_epoch_start() | called right before the epoch starts | - | - | N |
on_epoch_end() | called right afger the epoch ends | - | - | N |
on_pre_performance_check() | called right before the performance check starts | - | - | N |
on_post_performance_check() | called right after the batch starts | - | - | N |