239 lines
5.8 KiB
Python
239 lines
5.8 KiB
Python
import pytest
|
|
from pytorch_lightning import Trainer
|
|
from pytorch_lightning.examples.new_project_templates.lightning_module_template import LightningTemplateModel
|
|
from argparse import Namespace
|
|
from test_tube import Experiment
|
|
import numpy as np
|
|
import warnings
|
|
import torch
|
|
import os
|
|
|
|
SEED = 2334
|
|
torch.manual_seed(SEED)
|
|
np.random.seed(SEED)
|
|
|
|
|
|
def get_model():
|
|
# set up model with these hyperparams
|
|
root_dir = os.path.dirname(os.path.realpath(__file__))
|
|
hparams = Namespace(**{'drop_prob': 0.2,
|
|
'batch_size': 32,
|
|
'in_features': 28*28,
|
|
'learning_rate': 0.001*8,
|
|
'optimizer_name': 'adam',
|
|
'data_root': os.path.join(root_dir, 'mnist'),
|
|
'out_features': 10,
|
|
'hidden_dim': 1000})
|
|
model = LightningTemplateModel(hparams)
|
|
|
|
return model
|
|
|
|
|
|
def get_exp():
|
|
# set up exp object without actually saving logs
|
|
root_dir = os.path.dirname(os.path.realpath(__file__))
|
|
exp = Experiment(debug=True, save_dir=root_dir, name='tests_tt_dir')
|
|
return exp
|
|
|
|
|
|
def clear_tt_dir():
|
|
root_dir = os.path.dirname(os.path.realpath(__file__))
|
|
tt_dir = os.path.join(root_dir, 'tests_tt_dir')
|
|
if os.path.exists(tt_dir):
|
|
os.rmdir(tt_dir)
|
|
|
|
|
|
def assert_ok_acc(trainer):
|
|
# this model should get 0.80+ acc
|
|
assert trainer.tng_tqdm_dic['val_acc'] > 0.80, "model failed to get expected 0.80 validation accuracy"
|
|
|
|
|
|
def test_cpu_model():
|
|
"""
|
|
Make sure model trains on CPU
|
|
:return:
|
|
"""
|
|
clear_tt_dir()
|
|
|
|
model = get_model()
|
|
|
|
trainer = Trainer(
|
|
experiment=get_exp(),
|
|
max_nb_epochs=1,
|
|
train_percent_check=0.4,
|
|
val_percent_check=0.4
|
|
)
|
|
result = trainer.fit(model)
|
|
|
|
# correct result and ok accuracy
|
|
assert result == 1, 'cpu model failed to complete'
|
|
assert_ok_acc(trainer)
|
|
|
|
clear_tt_dir()
|
|
|
|
|
|
def test_single_gpu_model():
|
|
"""
|
|
Make sure single GPU works (DP mode)
|
|
:return:
|
|
"""
|
|
if not torch.cuda.is_available():
|
|
warnings.warn('test_single_gpu_model cannot run. Rerun on a GPU node to run this test')
|
|
return
|
|
|
|
clear_tt_dir()
|
|
model = get_model()
|
|
|
|
trainer = Trainer(
|
|
experiment=get_exp(),
|
|
max_nb_epochs=1,
|
|
train_percent_check=0.4,
|
|
val_percent_check=0.4,
|
|
gpus=[0]
|
|
)
|
|
|
|
result = trainer.fit(model)
|
|
|
|
# correct result and ok accuracy
|
|
assert result == 1, 'single gpu model failed to complete'
|
|
assert_ok_acc(trainer)
|
|
|
|
clear_tt_dir()
|
|
|
|
|
|
def test_multi_gpu_model_dp():
|
|
"""
|
|
Make sure DP works
|
|
:return:
|
|
"""
|
|
if not torch.cuda.is_available():
|
|
warnings.warn('test_multi_gpu_model_dp cannot run. Rerun on a GPU node to run this test')
|
|
return
|
|
if not torch.cuda.device_count() > 1:
|
|
warnings.warn('test_multi_gpu_model_dp cannot run. Rerun on a node with 2+ GPUs to run this test')
|
|
return
|
|
|
|
clear_tt_dir()
|
|
model = get_model()
|
|
|
|
trainer = Trainer(
|
|
experiment=get_exp(),
|
|
max_nb_epochs=1,
|
|
train_percent_check=0.4,
|
|
val_percent_check=0.4,
|
|
gpus=[0, 1]
|
|
)
|
|
|
|
result = trainer.fit(model)
|
|
|
|
# correct result and ok accuracy
|
|
assert result == 1, 'multi-gpu dp model failed to complete'
|
|
assert_ok_acc(trainer)
|
|
|
|
clear_tt_dir()
|
|
|
|
|
|
def test_multi_gpu_model_ddp():
|
|
"""
|
|
Make sure DDP works
|
|
:return:
|
|
"""
|
|
if not torch.cuda.is_available():
|
|
warnings.warn('test_multi_gpu_model_ddp cannot run. Rerun on a GPU node to run this test')
|
|
return
|
|
if not torch.cuda.device_count() > 1:
|
|
warnings.warn('test_multi_gpu_model_ddp cannot run. Rerun on a node with 2+ GPUs to run this test')
|
|
return
|
|
|
|
clear_tt_dir()
|
|
model = get_model()
|
|
|
|
trainer = Trainer(
|
|
experiment=get_exp(),
|
|
max_nb_epochs=1,
|
|
train_percent_check=0.4,
|
|
val_percent_check=0.4,
|
|
gpus=[0, 1],
|
|
distributed_backend='ddp'
|
|
)
|
|
|
|
result = trainer.fit(model)
|
|
|
|
# correct result and ok accuracy
|
|
assert result == 1, 'multi-gpu ddp model failed to complete'
|
|
assert_ok_acc(trainer)
|
|
|
|
clear_tt_dir()
|
|
|
|
|
|
def test_amp_gpu_ddp():
|
|
"""
|
|
Make sure DDP + AMP work
|
|
:return:
|
|
"""
|
|
if not torch.cuda.is_available():
|
|
warnings.warn('test_amp_gpu_ddp cannot run. Rerun on a GPU node to run this test')
|
|
return
|
|
if not torch.cuda.device_count() > 1:
|
|
warnings.warn('test_amp_gpu_ddp cannot run. Rerun on a node with 2+ GPUs to run this test')
|
|
return
|
|
|
|
clear_tt_dir()
|
|
model = get_model()
|
|
|
|
trainer = Trainer(
|
|
experiment=get_exp(),
|
|
max_nb_epochs=1,
|
|
train_percent_check=0.4,
|
|
val_percent_check=0.4,
|
|
gpus=[0, 1],
|
|
distributed_backend='ddp',
|
|
use_amp=True
|
|
)
|
|
|
|
result = trainer.fit(model)
|
|
|
|
# correct result and ok accuracy
|
|
assert result == 1, 'amp + ddp model failed to complete'
|
|
assert_ok_acc(trainer)
|
|
|
|
clear_tt_dir()
|
|
|
|
|
|
def test_amp_gpu_dp():
|
|
"""
|
|
Make sure DP + AMP work
|
|
:return:
|
|
"""
|
|
if not torch.cuda.is_available():
|
|
warnings.warn('test_amp_gpu_dp cannot run. Rerun on a GPU node to run this test')
|
|
return
|
|
if not torch.cuda.device_count() > 1:
|
|
warnings.warn('test_amp_gpu_dp cannot run. Rerun on a node with 2+ GPUs to run this test')
|
|
return
|
|
|
|
clear_tt_dir()
|
|
model = get_model()
|
|
|
|
trainer = Trainer(
|
|
experiment=get_exp(),
|
|
max_nb_epochs=1,
|
|
train_percent_check=0.4,
|
|
val_percent_check=0.4,
|
|
gpus=[0, 1],
|
|
distributed_backend='dp',
|
|
use_amp=True
|
|
)
|
|
|
|
result = trainer.fit(model)
|
|
|
|
# correct result and ok accuracy
|
|
assert result == 1, 'amp + gpu model failed to complete'
|
|
assert_ok_acc(trainer)
|
|
|
|
clear_tt_dir()
|
|
|
|
|
|
if __name__ == '__main__':
|
|
pytest.main([__file__])
|