lightning/tests/base/deterministic_model.py

276 lines
9.7 KiB
Python

# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
from torch import nn
from torch.utils.data import Dataset, DataLoader
from pytorch_lightning.core.lightning import LightningModule
from pytorch_lightning.utilities import DistributedType
class DeterministicModel(LightningModule):
def __init__(self, weights=None):
super().__init__()
self.training_step_called = False
self.training_step_end_called = False
self.training_epoch_end_called = False
self.validation_step_called = False
self.validation_step_end_called = False
self.validation_epoch_end_called = False
self.assert_backward = True
self.l1 = nn.Linear(2, 3, bias=False)
if weights is None:
weights = torch.tensor([
[4, 3, 5],
[10, 11, 13]
]).float()
p = torch.nn.Parameter(weights, requires_grad=True)
self.l1.weight = p
def forward(self, x):
return self.l1(x)
def step(self, batch, batch_idx):
x = batch
bs = x.size(0)
y_hat = self.l1(x)
test_hat = y_hat.cpu().detach()
assert torch.all(test_hat[:, 0] == 15.0)
assert torch.all(test_hat[:, 1] == 42.0)
out = y_hat.sum()
assert out == (42.0 * bs) + (15.0 * bs)
return out
def assert_graph_count(self, result, count=1):
counts = self.count_num_graphs(result)
assert counts == count
def count_num_graphs(self, result, num_graphs=0):
for k, v in result.items():
if isinstance(v, torch.Tensor) and v.grad_fn is not None:
num_graphs += 1
if isinstance(v, dict):
num_graphs += self.count_num_graphs(v)
return num_graphs
# ---------------------------
# scalar return
# ---------------------------
def training_step_scalar_return(self, batch, batch_idx):
acc = self.step(batch, batch_idx)
self.training_step_called = True
return acc
def training_step_end_scalar(self, output):
self.training_step_end_called = True
# make sure loss has the grad
assert isinstance(output, torch.Tensor)
assert output.grad_fn is not None
# make sure nothing else has grads
assert self.count_num_graphs({'loss': output}) == 1
assert output == 171
return output
def training_epoch_end_scalar(self, outputs):
"""
There should be an array of scalars without graphs that are all 171 (4 of them)
"""
self.training_epoch_end_called = True
if self._distrib_type in (DistributedType.DP, DistributedType.DDP2):
pass
else:
# only saw 4 batches
assert len(outputs) == 4
for batch_out in outputs:
batch_out = batch_out['loss']
assert batch_out == 171
assert batch_out.grad_fn is None
assert isinstance(batch_out, torch.Tensor)
# --------------------------
# dictionary returns
# --------------------------
def training_step_dict_return(self, batch, batch_idx):
acc = self.step(batch, batch_idx)
logs = {'log_acc1': torch.tensor(12).type_as(acc), 'log_acc2': torch.tensor(7).type_as(acc)}
pbar = {'pbar_acc1': torch.tensor(17).type_as(acc), 'pbar_acc2': torch.tensor(19).type_as(acc)}
self.training_step_called = True
return {'loss': acc, 'log': logs, 'progress_bar': pbar, 'train_step_test': torch.tensor(549).type_as(acc)}
def training_step_for_step_end_dict(self, batch, batch_idx):
"""sends outputs to training_batch_end"""
acc = self.step(batch, batch_idx)
logs = {'log_acc1': torch.tensor(12).type_as(acc), 'log_acc2': torch.tensor(7).type_as(acc)}
pbar = {'pbar_acc1': torch.tensor(17).type_as(acc), 'pbar_acc2': torch.tensor(19).type_as(acc)}
self.training_step_called = True
result = {'loss': acc}
result.update(logs)
result.update(pbar)
return result
def training_step_end_dict(self, output):
self.training_step_end_called = True
# make sure loss has the grad
assert 'loss' in output
assert output['loss'].grad_fn is not None
# make sure nothing else has grads
assert self.count_num_graphs(output) == 1
# make sure the other keys are there
assert 'log_acc1' in output
assert 'log_acc2' in output
assert 'pbar_acc1' in output
assert 'pbar_acc2' in output
logs = {'log_acc1': output['log_acc1'] + 2, 'log_acc2': output['log_acc2'] + 2}
pbar = {'pbar_acc1': output['pbar_acc1'] + 2, 'pbar_acc2': output['pbar_acc2'] + 2}
acc = output['loss']
return {'loss': acc, 'log': logs, 'progress_bar': pbar, 'train_step_end': acc}
def training_epoch_end_dict(self, outputs):
self.training_epoch_end_called = True
if self._distrib_type in (DistributedType.DP, DistributedType.DDP2):
pass
else:
# only saw 4 batches
assert len(outputs) == 4
for batch_out in outputs:
assert len(batch_out.keys()) == 4
assert self.count_num_graphs(batch_out) == 0
last_key = 'train_step_end' if self.training_step_end_called else 'train_step_test'
keys = ['loss', 'log', 'progress_bar', last_key]
for key in keys:
assert key in batch_out
prototype_loss = outputs[0]['loss']
logs = {'epoch_end_log_1': torch.tensor(178).type_as(prototype_loss)}
pbar = {'epoch_end_pbar_1': torch.tensor(234).type_as(prototype_loss)}
return {'log': logs, 'progress_bar': pbar}
def validation_step_no_return(self, batch, batch_idx):
self.validation_step_called = True
self.step(batch, batch_idx)
def validation_step_scalar_return(self, batch, batch_idx):
self.validation_step_called = True
acc = self.step(batch, batch_idx)
return acc
def validation_step_arbitary_dict_return(self, batch, batch_idx):
self.validation_step_called = True
acc = self.step(batch, batch_idx)
return {'some': acc, 'value': 'a'}
def validation_step_dict_return(self, batch, batch_idx):
self.validation_step_called = True
acc = self.step(batch, batch_idx)
logs = {'log_acc1': torch.tensor(12 + batch_idx).type_as(acc), 'log_acc2': torch.tensor(7).type_as(acc)}
pbar = {'pbar_acc1': torch.tensor(17).type_as(acc), 'pbar_acc2': torch.tensor(19).type_as(acc)}
return {'val_loss': acc, 'log': logs, 'progress_bar': pbar}
def validation_step_end_no_return(self, val_step_output):
assert len(val_step_output) == 3
assert val_step_output['val_loss'] == 171
assert val_step_output['log']['log_acc1'] >= 12
assert val_step_output['progress_bar']['pbar_acc1'] == 17
self.validation_step_end_called = True
def validation_step_end(self, val_step_output):
assert len(val_step_output) == 3
assert val_step_output['val_loss'] == 171
assert val_step_output['log']['log_acc1'] >= 12
assert val_step_output['progress_bar']['pbar_acc1'] == 17
self.validation_step_end_called = True
val_step_output['val_step_end'] = torch.tensor(1802)
return val_step_output
def validation_epoch_end(self, outputs):
assert len(outputs) == self.trainer.num_val_batches[0]
for i, out in enumerate(outputs):
assert out['log']['log_acc1'] >= 12 + i
self.validation_epoch_end_called = True
result = outputs[-1]
result['val_epoch_end'] = torch.tensor(1233)
return result
# -----------------------------
# DATA
# -----------------------------
def train_dataloader(self):
return DataLoader(DummyDataset(), batch_size=3, shuffle=False)
def val_dataloader(self):
return DataLoader(DummyDataset(), batch_size=3, shuffle=False)
def configure_optimizers(self):
return torch.optim.Adam(self.parameters(), lr=0)
def configure_optimizers__lr_on_plateau_epoch(self):
optimizer = torch.optim.Adam(self.parameters(), lr=0)
lr_scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer)
scheduler = {'scheduler': lr_scheduler, 'interval': 'epoch', 'monitor': 'epoch_end_log_1'}
return [optimizer], [scheduler]
def configure_optimizers__lr_on_plateau_step(self):
optimizer = torch.optim.Adam(self.parameters(), lr=0)
lr_scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer)
scheduler = {'scheduler': lr_scheduler, 'interval': 'step', 'monitor': 'pbar_acc1'}
return [optimizer], [scheduler]
def backward(self, loss, optimizer, optimizer_idx):
if self.assert_backward:
if self.trainer.precision == 16:
assert loss > 171 * 1000
else:
assert loss == 171.0
super().backward(loss, optimizer, optimizer_idx)
class DummyDataset(Dataset):
def __len__(self):
return 12
def __getitem__(self, idx):
return torch.tensor([0.5, 1.0, 2.0])