276 lines
9.7 KiB
Python
276 lines
9.7 KiB
Python
# Copyright The PyTorch Lightning team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import torch
|
|
from torch import nn
|
|
from torch.utils.data import Dataset, DataLoader
|
|
|
|
from pytorch_lightning.core.lightning import LightningModule
|
|
from pytorch_lightning.utilities import DistributedType
|
|
|
|
|
|
class DeterministicModel(LightningModule):
|
|
|
|
def __init__(self, weights=None):
|
|
super().__init__()
|
|
|
|
self.training_step_called = False
|
|
self.training_step_end_called = False
|
|
self.training_epoch_end_called = False
|
|
|
|
self.validation_step_called = False
|
|
self.validation_step_end_called = False
|
|
self.validation_epoch_end_called = False
|
|
|
|
self.assert_backward = True
|
|
|
|
self.l1 = nn.Linear(2, 3, bias=False)
|
|
if weights is None:
|
|
weights = torch.tensor([
|
|
[4, 3, 5],
|
|
[10, 11, 13]
|
|
]).float()
|
|
p = torch.nn.Parameter(weights, requires_grad=True)
|
|
self.l1.weight = p
|
|
|
|
def forward(self, x):
|
|
return self.l1(x)
|
|
|
|
def step(self, batch, batch_idx):
|
|
x = batch
|
|
bs = x.size(0)
|
|
y_hat = self.l1(x)
|
|
|
|
test_hat = y_hat.cpu().detach()
|
|
assert torch.all(test_hat[:, 0] == 15.0)
|
|
assert torch.all(test_hat[:, 1] == 42.0)
|
|
out = y_hat.sum()
|
|
assert out == (42.0 * bs) + (15.0 * bs)
|
|
|
|
return out
|
|
|
|
def assert_graph_count(self, result, count=1):
|
|
counts = self.count_num_graphs(result)
|
|
assert counts == count
|
|
|
|
def count_num_graphs(self, result, num_graphs=0):
|
|
for k, v in result.items():
|
|
if isinstance(v, torch.Tensor) and v.grad_fn is not None:
|
|
num_graphs += 1
|
|
if isinstance(v, dict):
|
|
num_graphs += self.count_num_graphs(v)
|
|
|
|
return num_graphs
|
|
|
|
# ---------------------------
|
|
# scalar return
|
|
# ---------------------------
|
|
def training_step_scalar_return(self, batch, batch_idx):
|
|
acc = self.step(batch, batch_idx)
|
|
self.training_step_called = True
|
|
return acc
|
|
|
|
def training_step_end_scalar(self, output):
|
|
self.training_step_end_called = True
|
|
|
|
# make sure loss has the grad
|
|
assert isinstance(output, torch.Tensor)
|
|
assert output.grad_fn is not None
|
|
|
|
# make sure nothing else has grads
|
|
assert self.count_num_graphs({'loss': output}) == 1
|
|
|
|
assert output == 171
|
|
|
|
return output
|
|
|
|
def training_epoch_end_scalar(self, outputs):
|
|
"""
|
|
There should be an array of scalars without graphs that are all 171 (4 of them)
|
|
"""
|
|
self.training_epoch_end_called = True
|
|
|
|
if self._distrib_type in (DistributedType.DP, DistributedType.DDP2):
|
|
pass
|
|
else:
|
|
# only saw 4 batches
|
|
assert len(outputs) == 4
|
|
for batch_out in outputs:
|
|
batch_out = batch_out['loss']
|
|
assert batch_out == 171
|
|
assert batch_out.grad_fn is None
|
|
assert isinstance(batch_out, torch.Tensor)
|
|
|
|
# --------------------------
|
|
# dictionary returns
|
|
# --------------------------
|
|
def training_step_dict_return(self, batch, batch_idx):
|
|
acc = self.step(batch, batch_idx)
|
|
|
|
logs = {'log_acc1': torch.tensor(12).type_as(acc), 'log_acc2': torch.tensor(7).type_as(acc)}
|
|
pbar = {'pbar_acc1': torch.tensor(17).type_as(acc), 'pbar_acc2': torch.tensor(19).type_as(acc)}
|
|
|
|
self.training_step_called = True
|
|
return {'loss': acc, 'log': logs, 'progress_bar': pbar, 'train_step_test': torch.tensor(549).type_as(acc)}
|
|
|
|
def training_step_for_step_end_dict(self, batch, batch_idx):
|
|
"""sends outputs to training_batch_end"""
|
|
acc = self.step(batch, batch_idx)
|
|
|
|
logs = {'log_acc1': torch.tensor(12).type_as(acc), 'log_acc2': torch.tensor(7).type_as(acc)}
|
|
pbar = {'pbar_acc1': torch.tensor(17).type_as(acc), 'pbar_acc2': torch.tensor(19).type_as(acc)}
|
|
|
|
self.training_step_called = True
|
|
result = {'loss': acc}
|
|
result.update(logs)
|
|
result.update(pbar)
|
|
return result
|
|
|
|
def training_step_end_dict(self, output):
|
|
self.training_step_end_called = True
|
|
|
|
# make sure loss has the grad
|
|
assert 'loss' in output
|
|
assert output['loss'].grad_fn is not None
|
|
|
|
# make sure nothing else has grads
|
|
assert self.count_num_graphs(output) == 1
|
|
|
|
# make sure the other keys are there
|
|
assert 'log_acc1' in output
|
|
assert 'log_acc2' in output
|
|
assert 'pbar_acc1' in output
|
|
assert 'pbar_acc2' in output
|
|
|
|
logs = {'log_acc1': output['log_acc1'] + 2, 'log_acc2': output['log_acc2'] + 2}
|
|
pbar = {'pbar_acc1': output['pbar_acc1'] + 2, 'pbar_acc2': output['pbar_acc2'] + 2}
|
|
|
|
acc = output['loss']
|
|
return {'loss': acc, 'log': logs, 'progress_bar': pbar, 'train_step_end': acc}
|
|
|
|
def training_epoch_end_dict(self, outputs):
|
|
self.training_epoch_end_called = True
|
|
|
|
if self._distrib_type in (DistributedType.DP, DistributedType.DDP2):
|
|
pass
|
|
else:
|
|
# only saw 4 batches
|
|
assert len(outputs) == 4
|
|
for batch_out in outputs:
|
|
assert len(batch_out.keys()) == 4
|
|
assert self.count_num_graphs(batch_out) == 0
|
|
last_key = 'train_step_end' if self.training_step_end_called else 'train_step_test'
|
|
keys = ['loss', 'log', 'progress_bar', last_key]
|
|
for key in keys:
|
|
assert key in batch_out
|
|
|
|
prototype_loss = outputs[0]['loss']
|
|
logs = {'epoch_end_log_1': torch.tensor(178).type_as(prototype_loss)}
|
|
pbar = {'epoch_end_pbar_1': torch.tensor(234).type_as(prototype_loss)}
|
|
|
|
return {'log': logs, 'progress_bar': pbar}
|
|
|
|
def validation_step_no_return(self, batch, batch_idx):
|
|
self.validation_step_called = True
|
|
self.step(batch, batch_idx)
|
|
|
|
def validation_step_scalar_return(self, batch, batch_idx):
|
|
self.validation_step_called = True
|
|
acc = self.step(batch, batch_idx)
|
|
return acc
|
|
|
|
def validation_step_arbitary_dict_return(self, batch, batch_idx):
|
|
self.validation_step_called = True
|
|
acc = self.step(batch, batch_idx)
|
|
return {'some': acc, 'value': 'a'}
|
|
|
|
def validation_step_dict_return(self, batch, batch_idx):
|
|
self.validation_step_called = True
|
|
acc = self.step(batch, batch_idx)
|
|
|
|
logs = {'log_acc1': torch.tensor(12 + batch_idx).type_as(acc), 'log_acc2': torch.tensor(7).type_as(acc)}
|
|
pbar = {'pbar_acc1': torch.tensor(17).type_as(acc), 'pbar_acc2': torch.tensor(19).type_as(acc)}
|
|
return {'val_loss': acc, 'log': logs, 'progress_bar': pbar}
|
|
|
|
def validation_step_end_no_return(self, val_step_output):
|
|
assert len(val_step_output) == 3
|
|
assert val_step_output['val_loss'] == 171
|
|
assert val_step_output['log']['log_acc1'] >= 12
|
|
assert val_step_output['progress_bar']['pbar_acc1'] == 17
|
|
self.validation_step_end_called = True
|
|
|
|
def validation_step_end(self, val_step_output):
|
|
assert len(val_step_output) == 3
|
|
assert val_step_output['val_loss'] == 171
|
|
assert val_step_output['log']['log_acc1'] >= 12
|
|
assert val_step_output['progress_bar']['pbar_acc1'] == 17
|
|
self.validation_step_end_called = True
|
|
|
|
val_step_output['val_step_end'] = torch.tensor(1802)
|
|
|
|
return val_step_output
|
|
|
|
def validation_epoch_end(self, outputs):
|
|
assert len(outputs) == self.trainer.num_val_batches[0]
|
|
|
|
for i, out in enumerate(outputs):
|
|
assert out['log']['log_acc1'] >= 12 + i
|
|
|
|
self.validation_epoch_end_called = True
|
|
|
|
result = outputs[-1]
|
|
result['val_epoch_end'] = torch.tensor(1233)
|
|
return result
|
|
|
|
# -----------------------------
|
|
# DATA
|
|
# -----------------------------
|
|
def train_dataloader(self):
|
|
return DataLoader(DummyDataset(), batch_size=3, shuffle=False)
|
|
|
|
def val_dataloader(self):
|
|
return DataLoader(DummyDataset(), batch_size=3, shuffle=False)
|
|
|
|
def configure_optimizers(self):
|
|
return torch.optim.Adam(self.parameters(), lr=0)
|
|
|
|
def configure_optimizers__lr_on_plateau_epoch(self):
|
|
optimizer = torch.optim.Adam(self.parameters(), lr=0)
|
|
lr_scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer)
|
|
scheduler = {'scheduler': lr_scheduler, 'interval': 'epoch', 'monitor': 'epoch_end_log_1'}
|
|
return [optimizer], [scheduler]
|
|
|
|
def configure_optimizers__lr_on_plateau_step(self):
|
|
optimizer = torch.optim.Adam(self.parameters(), lr=0)
|
|
lr_scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer)
|
|
scheduler = {'scheduler': lr_scheduler, 'interval': 'step', 'monitor': 'pbar_acc1'}
|
|
return [optimizer], [scheduler]
|
|
|
|
def backward(self, loss, optimizer, optimizer_idx):
|
|
if self.assert_backward:
|
|
if self.trainer.precision == 16:
|
|
assert loss > 171 * 1000
|
|
else:
|
|
assert loss == 171.0
|
|
|
|
super().backward(loss, optimizer, optimizer_idx)
|
|
|
|
|
|
class DummyDataset(Dataset):
|
|
|
|
def __len__(self):
|
|
return 12
|
|
|
|
def __getitem__(self, idx):
|
|
return torch.tensor([0.5, 1.0, 2.0])
|