lightning/tests/models/test_tpu.py

307 lines
10 KiB
Python

# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
from argparse import ArgumentParser
from unittest import mock
import pytest
from torch.utils.data import DataLoader
import tests.base.develop_pipelines as tpipes
from pytorch_lightning import Trainer
from pytorch_lightning.accelerators import TPUAccelerator
from pytorch_lightning.callbacks import EarlyStopping
from pytorch_lightning.trainer.states import TrainerState
from pytorch_lightning.utilities import _TPU_AVAILABLE
from pytorch_lightning.utilities.exceptions import MisconfigurationException
from tests.base import EvalModelTemplate
from tests.base.datasets import TrialMNIST
from tests.base.develop_utils import pl_multi_process_test
if _TPU_AVAILABLE:
import torch_xla
import torch_xla.distributed.xla_multiprocessing as xmp
SERIAL_EXEC = xmp.MpSerialExecutor()
_LARGER_DATASET = TrialMNIST(download=True, num_samples=2000, digits=(0, 1, 2, 5, 8))
# 8 cores needs a big dataset
def _serial_train_loader():
return DataLoader(_LARGER_DATASET, batch_size=32)
@pytest.mark.skipif(not _TPU_AVAILABLE, reason="test requires TPU machine")
@pl_multi_process_test
def test_model_tpu_cores_1(tmpdir):
"""Make sure model trains on TPU."""
trainer_options = dict(
default_root_dir=tmpdir,
progress_bar_refresh_rate=0,
max_epochs=1,
tpu_cores=1,
limit_train_batches=0.4,
limit_val_batches=0.4,
)
model = EvalModelTemplate()
tpipes.run_model_test(trainer_options, model, on_gpu=False, with_hpc=False)
@pytest.mark.parametrize('tpu_core', [1, 5])
@pytest.mark.skipif(not _TPU_AVAILABLE, reason="test requires TPU machine")
@pl_multi_process_test
def test_model_tpu_index(tmpdir, tpu_core):
"""Make sure model trains on TPU."""
trainer_options = dict(
default_root_dir=tmpdir,
progress_bar_refresh_rate=0,
max_epochs=1,
tpu_cores=[tpu_core],
limit_train_batches=0.4,
limit_val_batches=0.4,
)
model = EvalModelTemplate()
tpipes.run_model_test(trainer_options, model, on_gpu=False, with_hpc=False)
assert torch_xla._XLAC._xla_get_default_device() == f'xla:{tpu_core}'
@pytest.mark.skipif(not _TPU_AVAILABLE, reason="test requires TPU machine")
@pl_multi_process_test
def test_model_tpu_cores_8(tmpdir):
"""Make sure model trains on TPU."""
trainer_options = dict(
default_root_dir=tmpdir,
progress_bar_refresh_rate=0,
max_epochs=1,
tpu_cores=8,
limit_train_batches=0.4,
limit_val_batches=0.4,
)
model = EvalModelTemplate()
# 8 cores needs a big dataset
model.train_dataloader = _serial_train_loader
model.val_dataloader = _serial_train_loader
tpipes.run_model_test(trainer_options, model, on_gpu=False, with_hpc=False)
@pytest.mark.skipif(not _TPU_AVAILABLE, reason="test requires TPU machine")
@pl_multi_process_test
def test_model_16bit_tpu_cores_1(tmpdir):
"""Make sure model trains on TPU."""
trainer_options = dict(
default_root_dir=tmpdir,
precision=16,
progress_bar_refresh_rate=0,
max_epochs=1,
tpu_cores=1,
limit_train_batches=0.4,
limit_val_batches=0.4,
)
model = EvalModelTemplate()
tpipes.run_model_test(trainer_options, model, on_gpu=False)
assert os.environ.get('XLA_USE_BF16') == str(1), "XLA_USE_BF16 was not set in environment variables"
@pytest.mark.parametrize('tpu_core', [1, 5])
@pytest.mark.skipif(not _TPU_AVAILABLE, reason="test requires TPU machine")
@pl_multi_process_test
def test_model_16bit_tpu_index(tmpdir, tpu_core):
"""Make sure model trains on TPU."""
trainer_options = dict(
default_root_dir=tmpdir,
precision=16,
progress_bar_refresh_rate=0,
max_epochs=1,
tpu_cores=[tpu_core],
limit_train_batches=0.4,
limit_val_batches=0.2,
)
model = EvalModelTemplate()
tpipes.run_model_test(trainer_options, model, on_gpu=False)
assert torch_xla._XLAC._xla_get_default_device() == f'xla:{tpu_core}'
assert os.environ.get('XLA_USE_BF16') == str(1), "XLA_USE_BF16 was not set in environment variables"
@pytest.mark.skipif(not _TPU_AVAILABLE, reason="test requires TPU machine")
@pl_multi_process_test
def test_model_16bit_tpu_cores_8(tmpdir):
"""Make sure model trains on TPU."""
trainer_options = dict(
default_root_dir=tmpdir,
precision=16,
progress_bar_refresh_rate=0,
max_epochs=1,
tpu_cores=8,
limit_train_batches=0.4,
limit_val_batches=0.4,
)
model = EvalModelTemplate()
# 8 cores needs a big dataset
model.train_dataloader = _serial_train_loader
model.val_dataloader = _serial_train_loader
tpipes.run_model_test(trainer_options, model, on_gpu=False, with_hpc=False)
@pytest.mark.skipif(not _TPU_AVAILABLE, reason="test requires TPU machine")
@pl_multi_process_test
def test_model_tpu_early_stop(tmpdir):
"""Test if single TPU core training works"""
model = EvalModelTemplate()
trainer = Trainer(
callbacks=[EarlyStopping()],
default_root_dir=tmpdir,
progress_bar_refresh_rate=0,
max_epochs=50,
limit_train_batches=10,
limit_val_batches=10,
tpu_cores=1,
)
trainer.fit(model)
@pytest.mark.skipif(not _TPU_AVAILABLE, reason="test requires TPU machine")
@pl_multi_process_test
def test_tpu_grad_norm(tmpdir):
"""Test if grad_norm works on TPU."""
trainer_options = dict(
default_root_dir=tmpdir,
progress_bar_refresh_rate=0,
max_epochs=1,
tpu_cores=1,
limit_train_batches=0.4,
limit_val_batches=0.4,
gradient_clip_val=0.1,
)
model = EvalModelTemplate()
tpipes.run_model_test(trainer_options, model, on_gpu=False, with_hpc=False)
@pytest.mark.skipif(not _TPU_AVAILABLE, reason="test requires TPU machine")
@pl_multi_process_test
def test_dataloaders_passed_to_fit(tmpdir):
"""Test if dataloaders passed to trainer works on TPU"""
model = EvalModelTemplate()
trainer = Trainer(
default_root_dir=tmpdir,
max_epochs=1,
tpu_cores=8
)
trainer.fit(model, train_dataloader=model.train_dataloader(), val_dataloaders=model.val_dataloader())
assert trainer.state == TrainerState.FINISHED, f"Training failed with {trainer.state}"
@pytest.mark.parametrize(
['tpu_cores', 'expected_tpu_id'],
[pytest.param(1, None), pytest.param(8, None), pytest.param([1], 1), pytest.param([8], 8)],
)
@pytest.mark.skipif(not _TPU_AVAILABLE, reason="test requires missing TPU")
def test_tpu_id_to_be_as_expected(tpu_cores, expected_tpu_id):
"""Test if trainer.tpu_id is set as expected"""
assert Trainer(tpu_cores=tpu_cores).tpu_id == expected_tpu_id
def test_tpu_misconfiguration():
"""Test if trainer.tpu_id is set as expected"""
with pytest.raises(MisconfigurationException, match="`tpu_cores` can only be"):
Trainer(tpu_cores=[1, 8])
@pytest.mark.skipif(_TPU_AVAILABLE, reason="test requires missing TPU")
def test_exception_when_no_tpu_found(tmpdir):
"""Test if exception is thrown when xla devices are not available"""
with pytest.raises(MisconfigurationException, match='No TPU devices were found.'):
Trainer(tpu_cores=8)
@pytest.mark.parametrize('tpu_cores', [1, 8, [1]])
@pytest.mark.skipif(not _TPU_AVAILABLE, reason="test requires TPU machine")
def test_distributed_backend_set_when_using_tpu(tmpdir, tpu_cores):
"""Test if distributed_backend is set to `tpu` when tpu_cores is not None"""
assert Trainer(tpu_cores=tpu_cores).distributed_backend == "tpu"
@pytest.mark.skipif(not _TPU_AVAILABLE, reason="test requires TPU machine")
@pl_multi_process_test
def test_broadcast_on_tpu():
""" Checks if an object from the master process is broadcasted to other processes correctly"""
def test_broadcast(rank):
trainer = Trainer(tpu_cores=8)
backend = TPUAccelerator(trainer)
obj = ("ver_0.5", "logger_name", rank)
result = backend.broadcast(obj)
assert result == ("ver_0.5", "logger_name", 0)
xmp.spawn(test_broadcast, nprocs=8, start_method='fork')
@pytest.mark.parametrize(
["tpu_cores", "expected_tpu_id", "error_expected"],
[
pytest.param(1, None, False),
pytest.param(8, None, False),
pytest.param([1], 1, False),
pytest.param([8], 8, False),
pytest.param("1,", 1, False),
pytest.param("1", None, False),
pytest.param("9, ", 9, True),
pytest.param([9], 9, True),
pytest.param([0], 0, True),
pytest.param(2, None, True),
pytest.param(10, None, True),
],
)
@pytest.mark.skipif(not _TPU_AVAILABLE, reason="test requires TPU machine")
@pl_multi_process_test
def test_tpu_choice(tmpdir, tpu_cores, expected_tpu_id, error_expected):
if error_expected:
with pytest.raises(MisconfigurationException, match=r".*tpu_cores` can only be 1, 8 or [<1-8>]*"):
Trainer(default_root_dir=tmpdir, tpu_cores=tpu_cores)
else:
trainer = Trainer(default_root_dir=tmpdir, tpu_cores=tpu_cores)
assert trainer.tpu_id == expected_tpu_id
@pytest.mark.parametrize(['cli_args', 'expected'], [
pytest.param('--tpu_cores=8',
{'tpu_cores': 8}),
pytest.param("--tpu_cores=1,",
{'tpu_cores': '1,'})
])
@pytest.mark.skipif(not _TPU_AVAILABLE, reason="test requires TPU machine")
@pl_multi_process_test
def test_tpu_cores_with_argparse(cli_args, expected):
"""Test passing tpu_cores in command line"""
cli_args = cli_args.split(' ') if cli_args else []
with mock.patch("argparse._sys.argv", ["any.py"] + cli_args):
parser = ArgumentParser(add_help=False)
parser = Trainer.add_argparse_args(parent_parser=parser)
args = Trainer.parse_argparser(parser)
for k, v in expected.items():
assert getattr(args, k) == v
assert Trainer.from_argparse_args(args)