lightning/tests/models/test_grad_norm.py

116 lines
4.1 KiB
Python

# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
from unittest import mock
from unittest.mock import patch
import numpy as np
import pytest
from pytorch_lightning import Trainer
from pytorch_lightning.trainer.states import TrainerState
from tests.base import EvalModelTemplate
from tests.base.develop_utils import reset_seed
class ModelWithManualGradTracker(EvalModelTemplate):
def __init__(self, norm_type, *args, **kwargs):
super().__init__(*args, **kwargs)
self.stored_grad_norms, self.norm_type = [], float(norm_type)
# validation spoils logger's metrics with `val_loss` records
validation_step = None
val_dataloader = None
def training_step(self, batch, batch_idx, optimizer_idx=None):
# just return a loss, no log or progress bar meta
x, y = batch
loss_val = self.loss(y, self(x.flatten(1, -1)))
return {'loss': loss_val}
def on_after_backward(self):
out, norms = {}, []
prefix = f'grad_{self.norm_type}_norm_'
for name, p in self.named_parameters():
if p.grad is None:
continue
# `np.linalg.norm` implementation likely uses fp64 intermediates
flat = p.grad.data.cpu().numpy().ravel()
norm = np.linalg.norm(flat, self.norm_type)
norms.append(norm)
out[prefix + name] = round(norm, 4)
# handle total norm
norm = np.linalg.norm(norms, self.norm_type)
out[prefix + 'total'] = round(norm, 4)
self.stored_grad_norms.append(out)
@mock.patch.dict(os.environ, {"PL_DEV_DEBUG": "1"})
@pytest.mark.parametrize("norm_type", [1., 1.25, 2, 3, 5, 10, 'inf'])
def test_grad_tracking(tmpdir, norm_type, rtol=5e-3):
# rtol=5e-3 respects the 3 decimals rounding in `.grad_norms` and above
reset_seed()
# use a custom grad tracking module and a list logger
model = ModelWithManualGradTracker(norm_type)
trainer = Trainer(
default_root_dir=tmpdir,
max_epochs=3,
track_grad_norm=norm_type,
log_every_n_steps=1, # request grad_norms every batch
)
trainer.fit(model)
assert trainer.state == TrainerState.FINISHED, f"Training failed with {trainer.state}"
logged_metrics = trainer.dev_debugger.logged_metrics
assert len(logged_metrics) == len(model.stored_grad_norms)
# compare the logged metrics against tracked norms on `.backward`
for mod, log in zip(model.stored_grad_norms, logged_metrics):
common = mod.keys() & log.keys()
log, mod = [log[k] for k in common], [mod[k] for k in common]
assert np.allclose(log, mod, rtol=rtol)
@pytest.mark.parametrize("log_every_n_steps", [1, 2, 3])
def test_grad_tracking_interval(tmpdir, log_every_n_steps):
""" Test that gradient norms get tracked in the right interval and that everytime the same keys get logged. """
trainer = Trainer(
default_root_dir=tmpdir,
track_grad_norm=2,
log_every_n_steps=log_every_n_steps,
max_steps=10,
)
with patch.object(trainer.logger, "log_metrics") as mocked:
model = EvalModelTemplate()
trainer.fit(model)
expected = trainer.global_step // log_every_n_steps
grad_norm_dicts = []
for _, kwargs in mocked.call_args_list:
metrics = kwargs.get("metrics", {})
grad_norm_dict = {k: v for k, v in metrics.items() if k.startswith("grad_")}
if grad_norm_dict:
grad_norm_dicts.append(grad_norm_dict)
assert len(grad_norm_dicts) == expected
assert all(grad_norm_dicts[0].keys() == g.keys() for g in grad_norm_dicts)