lightning/tests/loggers/test_wandb.py

211 lines
7.3 KiB
Python

# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import pickle
import types
from argparse import ArgumentParser
from unittest import mock
import pytest
from pytorch_lightning import Trainer
from pytorch_lightning.loggers import WandbLogger
from pytorch_lightning.utilities.exceptions import MisconfigurationException
from tests.base import BoringModel
def get_warnings(recwarn):
warnings_text = '\n'.join(str(w.message) for w in recwarn.list)
recwarn.clear()
return warnings_text
@mock.patch('pytorch_lightning.loggers.wandb.wandb')
def test_wandb_logger_init(wandb, recwarn):
"""Verify that basic functionality of wandb logger works.
Wandb doesn't work well with pytest so we have to mock it out here."""
# test wandb.init called when there is no W&B run
wandb.run = None
logger = WandbLogger()
logger.log_metrics({'acc': 1.0})
wandb.init.assert_called_once()
wandb.init().log.assert_called_once_with({'acc': 1.0}, step=None)
# test sync_step functionality
wandb.init().log.reset_mock()
wandb.init.reset_mock()
wandb.run = None
wandb.init().step = 0
logger = WandbLogger(sync_step=False)
logger.log_metrics({'acc': 1.0})
wandb.init().log.assert_called_once_with({'acc': 1.0})
wandb.init().log.reset_mock()
logger.log_metrics({'acc': 1.0}, step=3)
wandb.init().log.assert_called_once_with({'acc': 1.0, 'trainer_step': 3})
# mock wandb step
wandb.init().step = 0
# test wandb.init not called if there is a W&B run
wandb.init().log.reset_mock()
wandb.init.reset_mock()
wandb.run = wandb.init()
logger = WandbLogger()
logger.log_metrics({'acc': 1.0}, step=3)
wandb.init.assert_called_once()
wandb.init().log.assert_called_once_with({'acc': 1.0}, step=3)
# continue training on same W&B run and offset step
wandb.init().step = 3
logger.finalize('success')
logger.log_metrics({'acc': 1.0}, step=3)
wandb.init().log.assert_called_with({'acc': 1.0}, step=6)
# log hyper parameters
logger.log_hyperparams({'test': None, 'nested': {'a': 1}, 'b': [2, 3, 4]})
wandb.init().config.update.assert_called_once_with(
{'test': 'None', 'nested/a': 1, 'b': [2, 3, 4]},
allow_val_change=True,
)
# watch a model
logger.watch('model', 'log', 10)
wandb.init().watch.assert_called_once_with('model', log='log', log_freq=10)
# verify warning for logging at a previous step
assert 'Trying to log at a previous step' not in get_warnings(recwarn)
# current step from wandb should be 6 (last logged step)
logger.experiment.step = 6
# logging at step 2 should raise a warning (step_offset is still 3)
logger.log_metrics({'acc': 1.0}, step=2)
assert 'Trying to log at a previous step' in get_warnings(recwarn)
# logging again at step 2 should not display again the same warning
logger.log_metrics({'acc': 1.0}, step=2)
assert 'Trying to log at a previous step' not in get_warnings(recwarn)
assert logger.name == wandb.init().project_name()
assert logger.version == wandb.init().id
@mock.patch('pytorch_lightning.loggers.wandb.wandb')
def test_wandb_pickle(wandb, tmpdir):
"""
Verify that pickling trainer with wandb logger works.
Wandb doesn't work well with pytest so we have to mock it out here.
"""
class Experiment:
""" """
id = 'the_id'
step = 0
dir = 'wandb'
def project_name(self):
return 'the_project_name'
wandb.run = None
wandb.init.return_value = Experiment()
logger = WandbLogger(id='the_id', offline=True)
trainer = Trainer(
default_root_dir=tmpdir,
max_epochs=1,
logger=logger,
)
# Access the experiment to ensure it's created
assert trainer.logger.experiment, 'missing experiment'
assert trainer.log_dir == logger.save_dir
pkl_bytes = pickle.dumps(trainer)
trainer2 = pickle.loads(pkl_bytes)
assert os.environ['WANDB_MODE'] == 'dryrun'
assert trainer2.logger.__class__.__name__ == WandbLogger.__name__
assert trainer2.logger.experiment, 'missing experiment'
wandb.init.assert_called()
assert 'id' in wandb.init.call_args[1]
assert wandb.init.call_args[1]['id'] == 'the_id'
del os.environ['WANDB_MODE']
@mock.patch('pytorch_lightning.loggers.wandb.wandb')
def test_wandb_logger_dirs_creation(wandb, tmpdir):
""" Test that the logger creates the folders and files in the right place. """
logger = WandbLogger(save_dir=str(tmpdir), offline=True)
assert logger.version is None
assert logger.name is None
# mock return values of experiment
wandb.run = None
wandb.init().step = 0
logger.experiment.id = '1'
logger.experiment.project_name.return_value = 'project'
logger.experiment.step = 0
for _ in range(2):
_ = logger.experiment
assert logger.version == '1'
assert logger.name == 'project'
assert str(tmpdir) == logger.save_dir
assert not os.listdir(tmpdir)
version = logger.version
model = BoringModel()
trainer = Trainer(default_root_dir=tmpdir, logger=logger, max_epochs=1, limit_train_batches=3, limit_val_batches=3)
assert trainer.log_dir == logger.save_dir
trainer.fit(model)
assert trainer.checkpoint_callback.dirpath == str(tmpdir / 'project' / version / 'checkpoints')
assert set(os.listdir(trainer.checkpoint_callback.dirpath)) == {'epoch=0-step=2.ckpt'}
assert trainer.log_dir == logger.save_dir
def test_wandb_sanitize_callable_params(tmpdir):
"""
Callback function are not serializiable. Therefore, we get them a chance to return
something and if the returned type is not accepted, return None.
"""
opt = "--max_epochs 1".split(" ")
parser = ArgumentParser()
parser = Trainer.add_argparse_args(parent_parser=parser)
params = parser.parse_args(opt)
def return_something():
return "something"
params.something = return_something
def wrapper_something():
return return_something
params.wrapper_something_wo_name = lambda: lambda: '1'
params.wrapper_something = wrapper_something
assert isinstance(params.gpus, types.FunctionType)
params = WandbLogger._convert_params(params)
params = WandbLogger._flatten_dict(params)
params = WandbLogger._sanitize_callable_params(params)
assert params["gpus"] == '_gpus_arg_default'
assert params["something"] == "something"
assert params["wrapper_something"] == "wrapper_something"
assert params["wrapper_something_wo_name"] == "<lambda>"
@mock.patch('pytorch_lightning.loggers.wandb.wandb')
def test_wandb_logger_offline_log_model(wandb, tmpdir):
""" Test that log_model=True raises an error in offline mode """
with pytest.raises(MisconfigurationException, match='checkpoints cannot be uploaded in offline mode'):
_ = WandbLogger(save_dir=str(tmpdir), offline=True, log_model=True)