lightning/tests/loggers/test_tensorboard.py

279 lines
9.3 KiB
Python

# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
from argparse import Namespace
from distutils.version import LooseVersion
from unittest import mock
import pytest
import torch
import yaml
from omegaconf import OmegaConf
from tensorboard.backend.event_processing.event_accumulator import EventAccumulator
from pytorch_lightning import Trainer
from pytorch_lightning.loggers import TensorBoardLogger
from tests.base import BoringModel
@pytest.mark.skipif(
LooseVersion(torch.__version__) < LooseVersion("1.5.0"),
reason="Minimal PT version is set to 1.5",
)
def test_tensorboard_hparams_reload(tmpdir):
class CustomModel(BoringModel):
def __init__(self, b1=0.5, b2=0.999):
super().__init__()
self.save_hyperparameters()
trainer = Trainer(max_steps=1, default_root_dir=tmpdir)
model = CustomModel()
assert trainer.log_dir == trainer.logger.log_dir
trainer.fit(model)
assert trainer.log_dir == trainer.logger.log_dir
folder_path = trainer.log_dir
# make sure yaml is there
with open(os.path.join(folder_path, "hparams.yaml")) as file:
# The FullLoader parameter handles the conversion from YAML
# scalar values to Python the dictionary format
yaml_params = yaml.safe_load(file)
assert yaml_params["b1"] == 0.5
assert yaml_params["b2"] == 0.999
assert len(yaml_params.keys()) == 2
# verify artifacts
assert len(os.listdir(os.path.join(folder_path, "checkpoints"))) == 1
# verify tb logs
event_acc = EventAccumulator(folder_path)
event_acc.Reload()
data_pt_1_5 = b'\x12\x1b"\x04\n\x02b1"\x04\n\x02b2*\r\n\x0b\x12\thp_metric'
data_pt_1_6 = b'\x12\x1f"\x06\n\x02b1 \x03"\x06\n\x02b2 \x03*\r\n\x0b\x12\thp_metric'
hparams_data = data_pt_1_6 if LooseVersion(torch.__version__) >= LooseVersion("1.6.0") else data_pt_1_5
assert event_acc.summary_metadata['_hparams_/experiment'].plugin_data.plugin_name == 'hparams'
assert event_acc.summary_metadata['_hparams_/experiment'].plugin_data.content == hparams_data
def test_tensorboard_automatic_versioning(tmpdir):
"""Verify that automatic versioning works"""
root_dir = tmpdir / "tb_versioning"
root_dir.mkdir()
(root_dir / "version_0").mkdir()
(root_dir / "version_1").mkdir()
logger = TensorBoardLogger(save_dir=tmpdir, name="tb_versioning")
assert logger.version == 2
def test_tensorboard_manual_versioning(tmpdir):
"""Verify that manual versioning works"""
root_dir = tmpdir / "tb_versioning"
root_dir.mkdir()
(root_dir / "version_0").mkdir()
(root_dir / "version_1").mkdir()
(root_dir / "version_2").mkdir()
logger = TensorBoardLogger(save_dir=tmpdir, name="tb_versioning", version=1)
assert logger.version == 1
def test_tensorboard_named_version(tmpdir):
"""Verify that manual versioning works for string versions, e.g. '2020-02-05-162402' """
name = "tb_versioning"
(tmpdir / name).mkdir()
expected_version = "2020-02-05-162402"
logger = TensorBoardLogger(save_dir=tmpdir, name=name, version=expected_version)
logger.log_hyperparams({"a": 1, "b": 2, 123: 3, 3.5: 4, 5j: 5}) # Force data to be written
assert logger.version == expected_version
assert os.listdir(tmpdir / name) == [expected_version]
assert os.listdir(tmpdir / name / expected_version)
@pytest.mark.parametrize("name", ["", None])
def test_tensorboard_no_name(tmpdir, name):
"""Verify that None or empty name works"""
logger = TensorBoardLogger(save_dir=tmpdir, name=name)
logger.log_hyperparams({"a": 1, "b": 2, 123: 3, 3.5: 4, 5j: 5}) # Force data to be written
assert logger.root_dir == tmpdir
assert os.listdir(tmpdir / "version_0")
@pytest.mark.parametrize("step_idx", [10, None])
def test_tensorboard_log_metrics(tmpdir, step_idx):
logger = TensorBoardLogger(tmpdir)
metrics = {
"float": 0.3,
"int": 1,
"FloatTensor": torch.tensor(0.1),
"IntTensor": torch.tensor(1),
}
logger.log_metrics(metrics, step_idx)
def test_tensorboard_log_hyperparams(tmpdir):
logger = TensorBoardLogger(tmpdir)
hparams = {
"float": 0.3,
"int": 1,
"string": "abc",
"bool": True,
"dict": {"a": {"b": "c"}},
"list": [1, 2, 3],
"namespace": Namespace(foo=Namespace(bar="buzz")),
"layer": torch.nn.BatchNorm1d,
}
logger.log_hyperparams(hparams)
def test_tensorboard_log_hparams_and_metrics(tmpdir):
logger = TensorBoardLogger(tmpdir, default_hp_metric=False)
hparams = {
"float": 0.3,
"int": 1,
"string": "abc",
"bool": True,
"dict": {"a": {"b": "c"}},
"list": [1, 2, 3],
"namespace": Namespace(foo=Namespace(bar="buzz")),
"layer": torch.nn.BatchNorm1d,
}
metrics = {"abc": torch.tensor([0.54])}
logger.log_hyperparams(hparams, metrics)
def test_tensorboard_log_omegaconf_hparams_and_metrics(tmpdir):
logger = TensorBoardLogger(tmpdir, default_hp_metric=False)
hparams = {
"float": 0.3,
"int": 1,
"string": "abc",
"bool": True,
"dict": {"a": {"b": "c"}},
"list": [1, 2, 3],
# "namespace": Namespace(foo=Namespace(bar="buzz")),
# "layer": torch.nn.BatchNorm1d,
}
hparams = OmegaConf.create(hparams)
metrics = {"abc": torch.tensor([0.54])}
logger.log_hyperparams(hparams, metrics)
@pytest.mark.parametrize("example_input_array", [None, torch.rand(2, 32)])
def test_tensorboard_log_graph(tmpdir, example_input_array):
""" test that log graph works with both model.example_input_array and
if array is passed externaly
"""
model = BoringModel()
if example_input_array is not None:
model.example_input_array = None
logger = TensorBoardLogger(tmpdir, log_graph=True)
logger.log_graph(model, example_input_array)
def test_tensorboard_log_graph_warning_no_example_input_array(tmpdir):
""" test that log graph throws warning if model.example_input_array is None """
model = BoringModel()
model.example_input_array = None
logger = TensorBoardLogger(tmpdir, log_graph=True)
with pytest.warns(
UserWarning,
match='Could not log computational graph since the `model.example_input_array`'
' attribute is not set or `input_array` was not given'
):
logger.log_graph(model)
@mock.patch('pytorch_lightning.loggers.TensorBoardLogger.log_metrics')
@pytest.mark.parametrize('expected', [
([5, 11, 17]),
])
def test_tensorboard_with_accummulated_gradients(mock_log_metrics, expected, tmpdir):
"""
Tests to ensure that tensorboard log properly when accumulated_gradients > 1
"""
class TestModel(BoringModel):
def __init__(self):
super().__init__()
self._count = 0
self._indexes = []
def training_step(self, batch, batch_idx):
output = self.layer(batch)
loss = self.loss(batch, output)
self.log('count', self._count, on_step=True, on_epoch=True)
self.log('loss', loss, on_step=True, on_epoch=True)
if not self.trainer.train_loop.should_accumulate():
if self.trainer.logger_connector.should_update_logs:
self._indexes.append(self.trainer.global_step)
return loss
def validation_step(self, batch, batch_idx):
output = self.layer(batch)
loss = self.loss(batch, output)
self.log('val_loss', loss, on_step=True, on_epoch=True)
return loss
def configure_optimizers(self):
optimizer = torch.optim.SGD(self.layer.parameters(), lr=.001)
lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=1)
return [optimizer], [lr_scheduler]
model = TestModel()
model.training_epoch_end = None
model.validation_epoch_end = None
logger_0 = TensorBoardLogger(tmpdir, default_hp_metric=False)
trainer = Trainer(
default_root_dir=tmpdir,
limit_train_batches=12,
limit_val_batches=0,
max_epochs=3,
gpus=0,
accumulate_grad_batches=2,
logger=[logger_0],
log_every_n_steps=3,
)
trainer.fit(model)
mock_count_epochs = [m[2]["step"] for m in mock_log_metrics.mock_calls if "count_epoch" in m[2]["metrics"]]
assert mock_count_epochs == expected
mock_count_steps = [m[2]["step"] for m in mock_log_metrics.mock_calls if "count_step" in m[2]["metrics"]]
assert model._indexes == mock_count_steps
@mock.patch('pytorch_lightning.loggers.tensorboard.SummaryWriter')
def test_tensorboard_finalize(summary_writer, tmpdir):
""" Test that the SummaryWriter closes in finalize. """
logger = TensorBoardLogger(save_dir=tmpdir)
logger.finalize("any")
summary_writer().flush.assert_called()
summary_writer().close.assert_called()