lightning/tests/callbacks/test_finetuning_callback.py

218 lines
7.9 KiB
Python

# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import pytest
import torch
from torch import nn
from torch.optim import SGD
from torch.utils.data import DataLoader
from pytorch_lightning import LightningModule, seed_everything, Trainer
from pytorch_lightning.callbacks import BackboneFinetuning, BaseFinetuning
from tests.base import BoringModel, RandomDataset
def test_finetuning_callback(tmpdir):
"""Test finetuning callbacks works as expected"""
seed_everything(42)
class FinetuningBoringModel(BoringModel):
def __init__(self):
super().__init__()
self.backbone = nn.Sequential(nn.Linear(32, 32, bias=False), nn.BatchNorm1d(32), nn.ReLU())
self.layer = torch.nn.Linear(32, 2)
self.backbone.has_been_used = False
def training_step(self, batch, batch_idx):
output = self(batch)
loss = self.loss(batch, output)
return {"loss": loss}
def forward(self, x):
self.backbone.has_been_used = True
x = self.backbone(x)
return self.layer(x)
def configure_optimizers(self):
optimizer = torch.optim.SGD(self.layer.parameters(), lr=0.1)
lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=1, gamma=0.7)
return [optimizer], [lr_scheduler]
def train_dataloader(self):
return DataLoader(RandomDataset(32, 64), batch_size=2)
class TestCallback(BackboneFinetuning):
def on_train_epoch_end(self, trainer, pl_module, outputs):
epoch = trainer.current_epoch
if self.unfreeze_backbone_at_epoch <= epoch:
optimizer = trainer.optimizers[0]
current_lr = optimizer.param_groups[0]['lr']
backbone_lr = self.previous_backbone_lr
if epoch < 6:
assert backbone_lr <= current_lr
else:
assert backbone_lr == current_lr
model = FinetuningBoringModel()
callback = TestCallback(unfreeze_backbone_at_epoch=3, verbose=False)
trainer = Trainer(
limit_train_batches=1,
default_root_dir=tmpdir,
callbacks=[callback],
max_epochs=8,
)
trainer.fit(model)
assert model.backbone.has_been_used
def test_finetuning_callback_warning(tmpdir):
"""Test finetuning callbacks works as expected"""
seed_everything(42)
class FinetuningBoringModel(BoringModel):
def __init__(self):
super().__init__()
self.backbone = nn.Linear(32, 2, bias=False)
self.layer = None
self.backbone.has_been_used = False
def training_step(self, batch, batch_idx):
output = self(batch)
loss = self.loss(batch, output)
return {"loss": loss}
def forward(self, x):
self.backbone.has_been_used = True
x = self.backbone(x)
return x
def train_dataloader(self):
return DataLoader(RandomDataset(32, 64), batch_size=2)
def configure_optimizers(self):
optimizer = torch.optim.SGD(self.parameters(), lr=0.1)
return optimizer
class TestCallback(BackboneFinetuning):
def finetune_function(self, pl_module, epoch: int, optimizer, opt_idx: int):
"""Called when the epoch begins."""
if epoch == 0:
self.unfreeze_and_add_param_group(
pl_module.backbone,
optimizer,
0.1,
train_bn=self.train_bn,
initial_denom_lr=self.initial_denom_lr
)
model = FinetuningBoringModel()
model.validation_step = None
callback = TestCallback(unfreeze_backbone_at_epoch=3, verbose=False)
with pytest.warns(UserWarning, match="Did you init your optimizer in"):
trainer = Trainer(
limit_train_batches=1,
default_root_dir=tmpdir,
callbacks=[callback],
max_epochs=2,
)
trainer.fit(model)
assert model.backbone.has_been_used
def test_freeze_unfreeze_function(tmpdir):
"""Test freeze properly set requieres_grad on the modules"""
seed_everything(42)
class FreezeModel(LightningModule):
def __init__(self):
super().__init__()
self.backbone = nn.Sequential(nn.Linear(32, 32), nn.BatchNorm1d(32), nn.ReLU(), nn.Linear(32, 2))
model = FreezeModel()
BaseFinetuning.freeze(model, train_bn=True)
assert not model.backbone[0].weight.requires_grad
assert model.backbone[1].weight.requires_grad
assert not model.backbone[3].weight.requires_grad
BaseFinetuning.freeze(model, train_bn=False)
assert not model.backbone[0].weight.requires_grad
assert not model.backbone[1].weight.requires_grad
assert not model.backbone[3].weight.requires_grad
BaseFinetuning.make_trainable(model)
assert model.backbone[0].weight.requires_grad
assert model.backbone[1].weight.requires_grad
assert model.backbone[3].weight.requires_grad
BaseFinetuning.freeze(model.backbone[0], train_bn=False)
assert not model.backbone[0].weight.requires_grad
BaseFinetuning.freeze(([(model.backbone[1]), [model.backbone[3]]]), train_bn=True)
assert model.backbone[1].weight.requires_grad
assert not model.backbone[3].weight.requires_grad
def test_unfreeze_and_add_param_group_function(tmpdir):
"""Test unfreeze_and_add_param_group properly unfreeze parameters and add to the correct param_group"""
seed_everything(42)
class FreezeModel(LightningModule):
def __init__(self):
super().__init__()
self.backbone = nn.Sequential(
nn.Linear(32, 32, bias=False),
nn.Linear(32, 32, bias=False),
nn.Linear(32, 32, bias=False),
nn.Linear(32, 32, bias=False),
nn.Linear(32, 32, bias=False),
nn.BatchNorm1d(32)
)
model = FreezeModel()
optimizer = SGD(model.backbone[0].parameters(), lr=0.01)
with pytest.warns(UserWarning, match="The provided params to be freezed already"):
BaseFinetuning.unfreeze_and_add_param_group(model.backbone[0], optimizer=optimizer)
assert optimizer.param_groups[0]["lr"] == 0.01
model.backbone[1].weight.requires_grad = False
BaseFinetuning.unfreeze_and_add_param_group(model.backbone[1], optimizer=optimizer)
assert len(optimizer.param_groups) == 2
assert optimizer.param_groups[1]["lr"] == 0.001
assert torch.equal(optimizer.param_groups[1]["params"][0], model.backbone[1].weight)
assert model.backbone[1].weight.requires_grad
with pytest.warns(UserWarning, match="The provided params to be freezed already"):
BaseFinetuning.unfreeze_and_add_param_group(model, optimizer=optimizer, lr=100, train_bn=False)
assert len(optimizer.param_groups) == 3
assert optimizer.param_groups[2]["lr"] == 100
assert len(optimizer.param_groups[2]["params"]) == 3
for group_idx, group in enumerate(optimizer.param_groups):
if group_idx == 0:
assert torch.equal(optimizer.param_groups[0]["params"][0], model.backbone[0].weight)
if group_idx == 2:
assert torch.equal(optimizer.param_groups[2]["params"][0], model.backbone[2].weight)
assert torch.equal(optimizer.param_groups[2]["params"][1], model.backbone[3].weight)
assert torch.equal(optimizer.param_groups[2]["params"][2], model.backbone[4].weight)