lightning/pytorch_lightning/plugins/precision/apex_amp.py

112 lines
4.4 KiB
Python

# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Any, Callable, Dict, Optional, Sequence
import torch
from torch import Tensor
from torch.optim import Optimizer
import pytorch_lightning as pl
from pytorch_lightning.plugins.precision.mixed import MixedPrecisionPlugin
from pytorch_lightning.utilities import _APEX_AVAILABLE, AMPType
from pytorch_lightning.utilities.types import _PARAMETERS
if _APEX_AVAILABLE:
from apex import amp
class ApexMixedPrecisionPlugin(MixedPrecisionPlugin):
"""Mixed Precision Plugin based on Nvidia/Apex (https://github.com/NVIDIA/apex)"""
def __init__(self, amp_level: str = "O2") -> None:
super().__init__()
self.backend = AMPType.APEX
self.amp_level = amp_level
self._connected = False
def master_params(self, optimizer: Optimizer) -> _PARAMETERS:
return amp.master_params(optimizer)
def dispatch(self, trainer: "pl.Trainer") -> None:
if not self._connected:
accelerator = trainer.accelerator
_, accelerator.optimizers = amp.initialize(
trainer.lightning_module, accelerator.optimizers, opt_level=self.amp_level
)
self._connected = True
return super().dispatch(trainer)
def backward(
self,
model: "pl.LightningModule",
closure_loss: Tensor,
optimizer: Optional[Optimizer],
*args: Any,
**kwargs: Any,
) -> None:
"""Run before precision plugin executes backward
Args:
model: the model to be optimized
closure_loss: the loss value obtained from the closure
optimizer: current optimizer being used. ``None`` if using manual optimization
"""
opt = optimizer or model.trainer.optimizers
with amp.scale_loss(closure_loss, opt) as closure_loss:
super().backward(model, closure_loss, optimizer, *args, **kwargs)
@staticmethod
def reinit_scheduler_properties(optimizers: Sequence[Optimizer], schedulers: Sequence[Any]) -> None:
"""Reinitializes schedulers with correct properties"""
# Reinitialize optimizer.step properties added by schedulers
for scheduler in schedulers:
scheduler = scheduler["scheduler"]
state = None
for optimizer in optimizers:
# check that we dont mix users optimizers and schedulers
if scheduler.optimizer == optimizer:
# Find the mro belonging to the base lr scheduler class
for i, mro in enumerate(scheduler.__class__.__mro__):
if mro in (torch.optim.lr_scheduler._LRScheduler, torch.optim.lr_scheduler.ReduceLROnPlateau):
state = scheduler.state_dict()
scheduler.__class__.__mro__[i].__init__(scheduler, optimizer)
scheduler.load_state_dict(state)
break
if state is not None:
break
def pre_optimizer_step(
self,
model: "pl.LightningModule",
optimizer: Optimizer,
optimizer_idx: int,
lambda_closure: Callable,
**kwargs: Any,
) -> bool:
"""Hook to do something before each optimizer step."""
super().pre_optimizer_step(model, optimizer, optimizer_idx, lambda_closure, **kwargs)
# the following should be in a `optimizer_step` hook but we don't have one in the precision plugin.
lambda_closure() # APEX amp does not support closures
optimizer.step(**kwargs)
return False
def on_load_checkpoint(self, checkpoint: Dict[str, Any]) -> None:
if "amp_scaling_state" in checkpoint:
amp.load_state_dict(checkpoint["amp_scaling_state"])
def on_save_checkpoint(self, checkpoint: Dict[str, Any]) -> None:
checkpoint["amp_scaling_state"] = amp.state_dict()