lightning/tests/base/eval_model_valid_steps.py

102 lines
2.9 KiB
Python

from abc import ABC
from collections import OrderedDict
import torch
class ValidationStepVariations(ABC):
"""
Houses all variations of validation steps
"""
def validation_step(self, batch, batch_idx, *args, **kwargs):
"""
Lightning calls this inside the validation loop
:param batch:
:return:
"""
x, y = batch
x = x.view(x.size(0), -1)
y_hat = self(x)
loss_val = self.loss(y, y_hat)
# acc
labels_hat = torch.argmax(y_hat, dim=1)
val_acc = torch.sum(y == labels_hat).item() / (len(y) * 1.0)
val_acc = torch.tensor(val_acc)
if self.on_gpu:
val_acc = val_acc.cuda(loss_val.device.index)
# in DP mode (default) make sure if result is scalar, there's another dim in the beginning
if self.trainer.use_dp:
loss_val = loss_val.unsqueeze(0)
val_acc = val_acc.unsqueeze(0)
# alternate possible outputs to test
if batch_idx % 1 == 0:
output = OrderedDict({
'val_loss': loss_val,
'val_acc': val_acc,
})
return output
if batch_idx % 2 == 0:
return val_acc
if batch_idx % 3 == 0:
output = OrderedDict({
'val_loss': loss_val,
'val_acc': val_acc,
'test_dic': {'val_loss_a': loss_val}
})
return output
def validation_step_multiple_dataloaders(self, batch, batch_idx, dataloader_idx, **kwargs):
"""
Lightning calls this inside the validation loop
:param batch:
:return:
"""
x, y = batch
x = x.view(x.size(0), -1)
y_hat = self(x)
loss_val = self.loss(y, y_hat)
# acc
labels_hat = torch.argmax(y_hat, dim=1)
val_acc = torch.sum(y == labels_hat).item() / (len(y) * 1.0)
val_acc = torch.tensor(val_acc)
if self.on_gpu:
val_acc = val_acc.cuda(loss_val.device.index)
# in DP mode (default) make sure if result is scalar, there's another dim in the beginning
if self.trainer.use_dp:
loss_val = loss_val.unsqueeze(0)
val_acc = val_acc.unsqueeze(0)
# alternate possible outputs to test
if batch_idx % 1 == 0:
output = OrderedDict({
'val_loss': loss_val,
'val_acc': val_acc,
})
return output
if batch_idx % 2 == 0:
return val_acc
if batch_idx % 3 == 0:
output = OrderedDict({
'val_loss': loss_val,
'val_acc': val_acc,
'test_dic': {'val_loss_a': loss_val}
})
return output
if batch_idx % 5 == 0:
output = OrderedDict({
f'val_loss_{dataloader_idx}': loss_val,
f'val_acc_{dataloader_idx}': val_acc,
})
return output