lightning/tests/base/eval_model_template.py

81 lines
2.6 KiB
Python

import torch
import torch.nn as nn
import torch.nn.functional as F
from pytorch_lightning.core.lightning import LightningModule
from tests.base.datasets import TrialMNIST
from tests.base.eval_model_optimizers import ConfigureOptimizersPool
from tests.base.eval_model_test_dataloaders import TestDataloaderVariations
from tests.base.eval_model_test_epoch_ends import TestEpochEndVariations
from tests.base.eval_model_test_steps import TestStepVariations
from tests.base.eval_model_train_dataloaders import TrainDataloaderVariations
from tests.base.eval_model_train_steps import TrainingStepVariations
from tests.base.eval_model_utils import ModelTemplateUtils
from tests.base.eval_model_valid_dataloaders import ValDataloaderVariations
from tests.base.eval_model_valid_epoch_ends import ValidationEpochEndVariations
from tests.base.eval_model_valid_steps import ValidationStepVariations
class EvalModelTemplate(
ModelTemplateUtils,
TrainingStepVariations,
ValidationStepVariations,
ValidationEpochEndVariations,
TestStepVariations,
TestEpochEndVariations,
TrainDataloaderVariations,
ValDataloaderVariations,
TestDataloaderVariations,
ConfigureOptimizersPool,
LightningModule
):
"""
This template houses all combinations of model configurations we want to test
"""
def __init__(self, hparams):
"""Pass in parsed HyperOptArgumentParser to the model."""
# init superclass
super().__init__()
self.hparams = hparams
# if you specify an example input, the summary will show input/output for each layer
self.example_input_array = torch.rand(5, 28 * 28)
# build model
self.__build_model()
def __build_model(self):
"""
Simple model for testing
:return:
"""
self.c_d1 = nn.Linear(
in_features=self.hparams.in_features,
out_features=self.hparams.hidden_dim
)
self.c_d1_bn = nn.BatchNorm1d(self.hparams.hidden_dim)
self.c_d1_drop = nn.Dropout(self.hparams.drop_prob)
self.c_d2 = nn.Linear(
in_features=self.hparams.hidden_dim,
out_features=self.hparams.out_features
)
def forward(self, x):
x = self.c_d1(x)
x = torch.tanh(x)
x = self.c_d1_bn(x)
x = self.c_d1_drop(x)
x = self.c_d2(x)
logits = F.log_softmax(x, dim=1)
return logits
def loss(self, labels, logits):
nll = F.nll_loss(logits, labels)
return nll
def prepare_data(self):
_ = TrialMNIST(root=self.hparams.data_root, train=True, download=True)