1202 lines
43 KiB
Python
1202 lines
43 KiB
Python
import glob
|
|
import math
|
|
import os
|
|
import pickle
|
|
import sys
|
|
import types
|
|
from argparse import Namespace
|
|
from copy import deepcopy
|
|
from pathlib import Path
|
|
from unittest.mock import patch, call, ANY
|
|
|
|
import cloudpickle
|
|
import pytest
|
|
import torch
|
|
from omegaconf import OmegaConf
|
|
|
|
import tests.base.develop_utils as tutils
|
|
from pytorch_lightning import Callback, LightningModule, Trainer
|
|
from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint
|
|
from pytorch_lightning.core.saving import (
|
|
load_hparams_from_tags_csv, load_hparams_from_yaml, save_hparams_to_tags_csv)
|
|
from pytorch_lightning.loggers import TensorBoardLogger
|
|
from pytorch_lightning.trainer.logging import TrainerLoggingMixin
|
|
from pytorch_lightning.utilities.cloud_io import load as pl_load
|
|
from pytorch_lightning.utilities.exceptions import MisconfigurationException
|
|
from pytorch_lightning.utilities import NATIVE_AMP_AVALAIBLE
|
|
from tests.base import EvalModelTemplate
|
|
|
|
|
|
@pytest.mark.parametrize('url_ckpt', [True, False])
|
|
def test_no_val_module(monkeypatch, tmpdir, tmpdir_server, url_ckpt):
|
|
"""Tests use case where trainer saves the model, and user loads it from tags independently."""
|
|
# set $TORCH_HOME, which determines torch hub's cache path, to tmpdir
|
|
monkeypatch.setenv('TORCH_HOME', str(tmpdir))
|
|
|
|
model = EvalModelTemplate()
|
|
|
|
# logger file to get meta
|
|
logger = tutils.get_default_logger(tmpdir)
|
|
|
|
trainer = Trainer(
|
|
default_root_dir=tmpdir,
|
|
max_epochs=1,
|
|
logger=logger,
|
|
checkpoint_callback=ModelCheckpoint(tmpdir),
|
|
)
|
|
# fit model
|
|
result = trainer.fit(model)
|
|
# training complete
|
|
assert result == 1, 'amp + ddp model failed to complete'
|
|
|
|
# save model
|
|
new_weights_path = os.path.join(tmpdir, 'save_test.ckpt')
|
|
trainer.save_checkpoint(new_weights_path)
|
|
|
|
# assert ckpt has hparams
|
|
ckpt = torch.load(new_weights_path)
|
|
assert LightningModule.CHECKPOINT_HYPER_PARAMS_KEY in ckpt.keys(), 'module_arguments missing from checkpoints'
|
|
|
|
# load new model
|
|
hparams_path = tutils.get_data_path(logger, path_dir=tmpdir)
|
|
hparams_path = os.path.join(hparams_path, 'hparams.yaml')
|
|
ckpt_path = f'http://{tmpdir_server[0]}:{tmpdir_server[1]}/{os.path.basename(new_weights_path)}' if url_ckpt else new_weights_path
|
|
model_2 = EvalModelTemplate.load_from_checkpoint(
|
|
checkpoint_path=ckpt_path,
|
|
hparams_file=hparams_path,
|
|
)
|
|
model_2.eval()
|
|
|
|
|
|
@pytest.mark.parametrize('url_ckpt', [True, False])
|
|
def test_no_val_end_module(monkeypatch, tmpdir, tmpdir_server, url_ckpt):
|
|
"""Tests use case where trainer saves the model, and user loads it from tags independently."""
|
|
# set $TORCH_HOME, which determines torch hub's cache path, to tmpdir
|
|
monkeypatch.setenv('TORCH_HOME', tmpdir)
|
|
|
|
model = EvalModelTemplate()
|
|
|
|
# logger file to get meta
|
|
logger = tutils.get_default_logger(tmpdir)
|
|
|
|
# fit model
|
|
trainer = Trainer(
|
|
default_root_dir=tmpdir,
|
|
max_epochs=1,
|
|
logger=logger,
|
|
checkpoint_callback=ModelCheckpoint(tmpdir),
|
|
)
|
|
result = trainer.fit(model)
|
|
|
|
# traning complete
|
|
assert result == 1, 'amp + ddp model failed to complete'
|
|
|
|
# save model
|
|
new_weights_path = os.path.join(tmpdir, 'save_test.ckpt')
|
|
trainer.save_checkpoint(new_weights_path)
|
|
|
|
# load new model
|
|
hparams_path = tutils.get_data_path(logger, path_dir=tmpdir)
|
|
hparams_path = os.path.join(hparams_path, 'hparams.yaml')
|
|
ckpt_path = f'http://{tmpdir_server[0]}:{tmpdir_server[1]}/{os.path.basename(new_weights_path)}' if url_ckpt else new_weights_path
|
|
model_2 = EvalModelTemplate.load_from_checkpoint(
|
|
checkpoint_path=ckpt_path,
|
|
hparams_file=hparams_path,
|
|
)
|
|
model_2.eval()
|
|
|
|
|
|
@pytest.mark.parametrize('url_ckpt', [True, False])
|
|
def test_strict_model_load(monkeypatch, tmpdir, tmpdir_server, url_ckpt):
|
|
"""Tests use case where trainer saves the model, and user loads it from tags independently."""
|
|
# set $TORCH_HOME, which determines torch hub's cache path, to tmpdir
|
|
monkeypatch.setenv('TORCH_HOME', tmpdir)
|
|
|
|
model = EvalModelTemplate()
|
|
# Extra layer
|
|
model.c_d3 = torch.nn.Linear(model.hidden_dim, model.hidden_dim)
|
|
|
|
# logger file to get meta
|
|
logger = tutils.get_default_logger(tmpdir)
|
|
|
|
# fit model
|
|
trainer = Trainer(
|
|
default_root_dir=tmpdir,
|
|
max_epochs=1,
|
|
logger=logger,
|
|
checkpoint_callback=ModelCheckpoint(tmpdir),
|
|
)
|
|
result = trainer.fit(model)
|
|
|
|
# traning complete
|
|
assert result == 1
|
|
|
|
# save model
|
|
new_weights_path = os.path.join(tmpdir, 'save_test.ckpt')
|
|
trainer.save_checkpoint(new_weights_path)
|
|
|
|
# load new model
|
|
hparams_path = tutils.get_data_path(logger, path_dir=tmpdir)
|
|
hparams_path = os.path.join(hparams_path, 'hparams.yaml')
|
|
ckpt_path = f'http://{tmpdir_server[0]}:{tmpdir_server[1]}/{os.path.basename(new_weights_path)}' \
|
|
if url_ckpt else new_weights_path
|
|
|
|
try:
|
|
EvalModelTemplate.load_from_checkpoint(
|
|
checkpoint_path=ckpt_path,
|
|
hparams_file=hparams_path,
|
|
)
|
|
except Exception:
|
|
failed = True
|
|
else:
|
|
failed = False
|
|
|
|
assert failed, "Model should not been loaded since the extra layer added."
|
|
|
|
failed = False
|
|
try:
|
|
EvalModelTemplate.load_from_checkpoint(
|
|
checkpoint_path=ckpt_path,
|
|
hparams_file=hparams_path,
|
|
strict=False,
|
|
)
|
|
except Exception:
|
|
failed = True
|
|
|
|
assert not failed, "Model should be loaded due to strict=False."
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
['schedule', 'expected'],
|
|
[
|
|
pytest.param({1: 2, 3: 4}, [1, 2, 4]),
|
|
pytest.param(3, [3, 3, 3]),
|
|
pytest.param(4, [4, 4, 4])
|
|
]
|
|
)
|
|
def test_gradient_accumulation_scheduling(tmpdir, schedule, expected):
|
|
"""
|
|
Test grad accumulation by the freq of optimizer updates
|
|
"""
|
|
|
|
# test incorrect configs
|
|
with pytest.raises(IndexError):
|
|
assert Trainer(accumulate_grad_batches={-1: 3, 1: 4, 4: 6})
|
|
with pytest.raises(IndexError):
|
|
assert Trainer(accumulate_grad_batches={-2: 3})
|
|
|
|
with pytest.raises(TypeError):
|
|
assert Trainer(accumulate_grad_batches={})
|
|
with pytest.raises(TypeError):
|
|
assert Trainer(accumulate_grad_batches=[[2, 3], [4, 6]])
|
|
with pytest.raises(TypeError):
|
|
assert Trainer(accumulate_grad_batches={1: 2, 3.: 4})
|
|
with pytest.raises(TypeError):
|
|
assert Trainer(accumulate_grad_batches={1: 2.5, 3: 5})
|
|
|
|
model = EvalModelTemplate()
|
|
|
|
trainer = Trainer(
|
|
accumulate_grad_batches=schedule,
|
|
limit_train_batches=0.7, # not to be divisible by accumulate_grad_batches on purpose
|
|
limit_val_batches=0.8,
|
|
max_epochs=4,
|
|
default_root_dir=tmpdir,
|
|
)
|
|
|
|
# test optimizer call freq matches scheduler
|
|
def _optimizer_step(epoch, batch_idx, optimizer, optimizer_idx,
|
|
second_order_closure=None, on_tpu=False,
|
|
using_native_amp=False, using_lbfgs=False):
|
|
# only test the first 12 batches in epoch
|
|
if batch_idx < 12:
|
|
if epoch == 0:
|
|
# reset counter when starting epoch
|
|
if batch_idx == expected[0] - 1:
|
|
model.prev_called_batch_idx = expected[0] - 1
|
|
|
|
# use this opportunity to test once
|
|
assert trainer.accumulate_grad_batches == expected[0]
|
|
|
|
# separate check for last batch with accumulate 1 step
|
|
if expected[0] == 1 and (batch_idx + 1) == trainer.num_training_batches:
|
|
assert batch_idx == model.prev_called_batch_idx
|
|
elif (batch_idx + 1) == trainer.num_training_batches:
|
|
# prev_called_batch_idx - schedule + modulus remainder
|
|
assert batch_idx == (model.prev_called_batch_idx - expected[0] + (batch_idx + 1) % expected[0])
|
|
else:
|
|
assert batch_idx == model.prev_called_batch_idx
|
|
model.prev_called_batch_idx += expected[0]
|
|
|
|
elif 1 <= epoch <= 2:
|
|
# reset counter when starting epoch
|
|
if batch_idx == expected[1] - 1:
|
|
model.prev_called_batch_idx = expected[1] - 1
|
|
|
|
# use this opportunity to test once
|
|
assert trainer.accumulate_grad_batches == expected[1]
|
|
|
|
if trainer.num_training_batches == batch_idx + 1:
|
|
# prev_called_batch_idx - schedule + modulus remainder
|
|
assert batch_idx == (model.prev_called_batch_idx - expected[1] + (batch_idx + 1) % expected[1])
|
|
else:
|
|
assert batch_idx == model.prev_called_batch_idx
|
|
model.prev_called_batch_idx += expected[1]
|
|
|
|
else:
|
|
if batch_idx == expected[2] - 1:
|
|
model.prev_called_batch_idx = expected[2] - 1
|
|
|
|
# use this opportunity to test once
|
|
assert trainer.accumulate_grad_batches == expected[2]
|
|
|
|
if (batch_idx + 1) == trainer.num_training_batches:
|
|
# prev_called_batch_idx - schedule + modulus remainder
|
|
assert batch_idx == (model.prev_called_batch_idx - expected[2] + (batch_idx + 1) % expected[2])
|
|
else:
|
|
assert batch_idx == model.prev_called_batch_idx
|
|
model.prev_called_batch_idx += expected[2]
|
|
|
|
optimizer.step()
|
|
|
|
# clear gradients
|
|
optimizer.zero_grad()
|
|
|
|
# for the test
|
|
model.optimizer_step = _optimizer_step
|
|
model.prev_called_batch_idx = 0
|
|
|
|
trainer.fit(model)
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
['accumulate_grad_batches', 'limit_train_batches'],
|
|
[
|
|
pytest.param({1: 2, 3: 4}, 1.0),
|
|
pytest.param({1: 2, 3: 4}, 0.5), # not to be divisible by accumulate_grad_batches on purpose
|
|
pytest.param(3, 1.0),
|
|
pytest.param(3, 0.8), # not to be divisible by accumulate_grad_batches on purpose
|
|
pytest.param(4, 1.0),
|
|
pytest.param(4, 0.7), # not to be divisible by accumulate_grad_batches on purpose
|
|
],
|
|
)
|
|
def test_gradient_accumulation_scheduling_last_batch(tmpdir, accumulate_grad_batches, limit_train_batches):
|
|
""" Verify optimizer.step() applied to last batch while grad accumulation """
|
|
|
|
class CurrentModel(EvalModelTemplate):
|
|
def on_after_backward(self):
|
|
self.loss_backward = deepcopy(self.state_dict())
|
|
|
|
def on_before_zero_grad(self, optimizer):
|
|
self.opt_step = self.state_dict()
|
|
|
|
def on_train_batch_end(self, outputs, batch, batch_idx, dataloader_idx):
|
|
_exclude_keys = ['num_batches_tracked', 'running_mean', 'running_var']
|
|
|
|
if (batch_idx + 1) == self.trainer.num_training_batches:
|
|
for key in self.loss_backward.keys():
|
|
# exclude the check for batch_norm parameters
|
|
if not any([k in key for k in _exclude_keys]):
|
|
assert not torch.equal(self.loss_backward[key], self.opt_step[key])
|
|
|
|
model = CurrentModel()
|
|
|
|
trainer = Trainer(
|
|
accumulate_grad_batches=accumulate_grad_batches,
|
|
max_epochs=4,
|
|
limit_train_batches=limit_train_batches,
|
|
default_root_dir=tmpdir
|
|
)
|
|
|
|
trainer.fit(model)
|
|
|
|
|
|
def test_loading_meta_tags(tmpdir):
|
|
""" test for backward compatibility to meta_tags.csv """
|
|
tutils.reset_seed()
|
|
|
|
hparams = EvalModelTemplate.get_default_hparams()
|
|
|
|
# save tags
|
|
logger = tutils.get_default_logger(tmpdir)
|
|
logger.log_hyperparams(Namespace(some_str='a_str', an_int=1, a_float=2.0))
|
|
logger.log_hyperparams(hparams)
|
|
logger.save()
|
|
|
|
# load hparams
|
|
path_expt_dir = tutils.get_data_path(logger, path_dir=tmpdir)
|
|
hparams_path = os.path.join(path_expt_dir, TensorBoardLogger.NAME_HPARAMS_FILE)
|
|
hparams = load_hparams_from_yaml(hparams_path)
|
|
|
|
# save as legacy meta_tags.csv
|
|
tags_path = os.path.join(path_expt_dir, 'meta_tags.csv')
|
|
save_hparams_to_tags_csv(tags_path, hparams)
|
|
|
|
tags = load_hparams_from_tags_csv(tags_path)
|
|
|
|
assert hparams == tags
|
|
|
|
|
|
def test_loading_yaml(tmpdir):
|
|
tutils.reset_seed()
|
|
|
|
hparams = EvalModelTemplate.get_default_hparams()
|
|
|
|
# save tags
|
|
logger = tutils.get_default_logger(tmpdir)
|
|
logger.log_hyperparams(Namespace(some_str='a_str', an_int=1, a_float=2.0))
|
|
logger.log_hyperparams(hparams)
|
|
logger.save()
|
|
|
|
# load hparams
|
|
path_expt_dir = tutils.get_data_path(logger, path_dir=tmpdir)
|
|
hparams_path = os.path.join(path_expt_dir, 'hparams.yaml')
|
|
tags = load_hparams_from_yaml(hparams_path)
|
|
|
|
assert tags['batch_size'] == 32 and tags['hidden_dim'] == 1000
|
|
|
|
|
|
def test_dp_output_reduce():
|
|
mixin = TrainerLoggingMixin()
|
|
|
|
# test identity when we have a single gpu
|
|
out = torch.rand(3, 1)
|
|
assert mixin.reduce_distributed_output(out, num_gpus=1) is out
|
|
|
|
# average when we have multiples
|
|
assert mixin.reduce_distributed_output(out, num_gpus=2) == out.mean()
|
|
|
|
# when we have a dict of vals
|
|
out = {
|
|
'a': out,
|
|
'b': {
|
|
'c': out
|
|
}
|
|
}
|
|
reduced = mixin.reduce_distributed_output(out, num_gpus=3)
|
|
assert reduced['a'] == out['a']
|
|
assert reduced['b']['c'] == out['b']['c']
|
|
|
|
|
|
@pytest.mark.parametrize(["save_top_k", "save_last", "file_prefix", "expected_files"], [
|
|
pytest.param(-1, False, '', {'epoch=4.ckpt', 'epoch=3.ckpt', 'epoch=2.ckpt', 'epoch=1.ckpt', 'epoch=0.ckpt'},
|
|
id="CASE K=-1 (all)"),
|
|
pytest.param(1, False, 'test_prefix', {'test_prefix-epoch=4.ckpt'},
|
|
id="CASE K=1 (2.5, epoch 4)"),
|
|
pytest.param(2, False, '', {'epoch=4.ckpt', 'epoch=2.ckpt'},
|
|
id="CASE K=2 (2.5 epoch 4, 2.8 epoch 2)"),
|
|
pytest.param(4, False, '', {'epoch=1.ckpt', 'epoch=4.ckpt', 'epoch=3.ckpt', 'epoch=2.ckpt'},
|
|
id="CASE K=4 (save all 4 base)"),
|
|
pytest.param(3, False, '', {'epoch=2.ckpt', 'epoch=3.ckpt', 'epoch=4.ckpt'},
|
|
id="CASE K=3 (save the 2nd, 3rd, 4th model)"),
|
|
pytest.param(1, True, '', {'epoch=4.ckpt', 'last.ckpt'},
|
|
id="CASE K=1 (save the 4th model and the last model)"),
|
|
])
|
|
def test_model_checkpoint_options(tmpdir, save_top_k, save_last, file_prefix, expected_files):
|
|
"""Test ModelCheckpoint options."""
|
|
|
|
def mock_save_function(filepath, *args):
|
|
open(filepath, 'a').close()
|
|
|
|
# simulated losses
|
|
losses = [10, 9, 2.8, 5, 2.5]
|
|
|
|
checkpoint_callback = ModelCheckpoint(tmpdir, monitor='checkpoint_on', save_top_k=save_top_k, save_last=save_last,
|
|
prefix=file_prefix, verbose=1)
|
|
checkpoint_callback.save_function = mock_save_function
|
|
trainer = Trainer()
|
|
|
|
# emulate callback's calls during the training
|
|
for i, loss in enumerate(losses):
|
|
trainer.current_epoch = i
|
|
trainer.global_step = i
|
|
trainer.logger_connector.callback_metrics = {'checkpoint_on': torch.tensor(loss)}
|
|
checkpoint_callback.on_validation_end(trainer, trainer.get_model())
|
|
|
|
file_lists = set(os.listdir(tmpdir))
|
|
|
|
assert len(file_lists) == len(expected_files), (
|
|
f"Should save {len(expected_files)} models when save_top_k={save_top_k} but found={file_lists}"
|
|
)
|
|
|
|
# verify correct naming
|
|
for fname in expected_files:
|
|
assert fname in file_lists
|
|
|
|
|
|
def test_model_checkpoint_only_weights(tmpdir):
|
|
"""Tests use case where ModelCheckpoint is configured to save only model weights, and
|
|
user tries to load checkpoint to resume training.
|
|
"""
|
|
model = EvalModelTemplate()
|
|
|
|
trainer = Trainer(
|
|
default_root_dir=tmpdir,
|
|
max_epochs=1,
|
|
checkpoint_callback=ModelCheckpoint(tmpdir, monitor='early_stop_on', save_weights_only=True),
|
|
)
|
|
# fit model
|
|
result = trainer.fit(model)
|
|
# training complete
|
|
assert result == 1, 'training failed to complete'
|
|
|
|
checkpoint_path = list(trainer.checkpoint_callback.best_k_models.keys())[0]
|
|
|
|
# assert saved checkpoint has no trainer data
|
|
checkpoint = torch.load(checkpoint_path)
|
|
assert 'optimizer_states' not in checkpoint, 'checkpoint should contain only model weights'
|
|
assert 'lr_schedulers' not in checkpoint, 'checkpoint should contain only model weights'
|
|
|
|
# assert loading model works when checkpoint has only weights
|
|
assert EvalModelTemplate.load_from_checkpoint(checkpoint_path=checkpoint_path)
|
|
|
|
# directly save model
|
|
new_weights_path = os.path.join(tmpdir, 'save_test.ckpt')
|
|
trainer.save_checkpoint(new_weights_path, weights_only=True)
|
|
# assert saved checkpoint has no trainer data
|
|
checkpoint = torch.load(new_weights_path)
|
|
assert 'optimizer_states' not in checkpoint, 'checkpoint should contain only model weights'
|
|
assert 'lr_schedulers' not in checkpoint, 'checkpoint should contain only model weights'
|
|
|
|
# assert restoring train state fails
|
|
with pytest.raises(KeyError, match='checkpoint contains only the model'):
|
|
trainer.checkpoint_connector.restore_training_state(checkpoint)
|
|
|
|
|
|
def test_model_freeze_unfreeze():
|
|
|
|
model = EvalModelTemplate()
|
|
|
|
model.freeze()
|
|
model.unfreeze()
|
|
|
|
|
|
@pytest.mark.parametrize('url_ckpt', [True, False])
|
|
def test_resume_from_checkpoint_epoch_restored(monkeypatch, tmpdir, tmpdir_server, url_ckpt):
|
|
"""Verify resuming from checkpoint runs the right number of epochs"""
|
|
# set $TORCH_HOME, which determines torch hub's cache path, to tmpdir
|
|
monkeypatch.setenv('TORCH_HOME', tmpdir)
|
|
|
|
hparams = EvalModelTemplate.get_default_hparams()
|
|
|
|
def _new_model():
|
|
# Create a model that tracks epochs and batches seen
|
|
model = EvalModelTemplate(**hparams)
|
|
model.num_epochs_seen = 0
|
|
model.num_batches_seen = 0
|
|
model.num_on_load_checkpoint_called = 0
|
|
|
|
def increment_epoch(self):
|
|
self.num_epochs_seen += 1
|
|
|
|
def increment_batch(self, batch, batch_idx, dataloader_idx):
|
|
self.num_batches_seen += 1
|
|
|
|
def increment_on_load_checkpoint(self, _):
|
|
self.num_on_load_checkpoint_called += 1
|
|
|
|
# Bind methods to keep track of epoch numbers, batch numbers it has seen
|
|
# as well as number of times it has called on_load_checkpoint()
|
|
model.on_epoch_end = types.MethodType(increment_epoch, model)
|
|
model.on_train_batch_start = types.MethodType(increment_batch, model)
|
|
model.on_load_checkpoint = types.MethodType(increment_on_load_checkpoint, model)
|
|
return model
|
|
|
|
model = _new_model()
|
|
|
|
trainer_options = dict(
|
|
progress_bar_refresh_rate=0,
|
|
max_epochs=2,
|
|
limit_train_batches=0.65,
|
|
limit_val_batches=1,
|
|
checkpoint_callback=ModelCheckpoint(tmpdir, monitor='early_stop_on', save_top_k=-1),
|
|
default_root_dir=tmpdir,
|
|
early_stop_callback=False,
|
|
val_check_interval=1.,
|
|
)
|
|
|
|
trainer = Trainer(**trainer_options)
|
|
# fit model
|
|
trainer.fit(model)
|
|
|
|
training_batches = trainer.num_training_batches
|
|
|
|
assert model.num_epochs_seen == 2
|
|
assert model.num_batches_seen == training_batches * 2
|
|
assert model.num_on_load_checkpoint_called == 0
|
|
|
|
# Other checkpoints can be uncommented if/when resuming mid-epoch is supported
|
|
checkpoints = sorted(glob.glob(os.path.join(trainer.checkpoint_callback.dirpath, '*.ckpt')))
|
|
if url_ckpt:
|
|
# transform local paths into url checkpoints
|
|
ip, port = tmpdir_server
|
|
checkpoints = [f'http://{ip}:{port}/' + os.path.basename(check) for check in checkpoints]
|
|
|
|
for check in checkpoints:
|
|
next_model = _new_model()
|
|
state = pl_load(check)
|
|
|
|
# Resume training
|
|
trainer_options['max_epochs'] = 2
|
|
new_trainer = Trainer(**trainer_options, resume_from_checkpoint=check)
|
|
new_trainer.fit(next_model)
|
|
assert state['global_step'] + next_model.num_batches_seen == training_batches * trainer_options['max_epochs']
|
|
assert next_model.num_on_load_checkpoint_called == 1
|
|
|
|
|
|
def _init_steps_model():
|
|
"""private method for initializing a model with 5% train epochs"""
|
|
model = EvalModelTemplate()
|
|
|
|
# define train epoch to 5% of data
|
|
train_percent = 0.5
|
|
# get number of samples in 1 epoch
|
|
num_train_samples = math.floor(len(model.train_dataloader()) * train_percent)
|
|
|
|
trainer_options = dict(
|
|
limit_train_batches=train_percent,
|
|
)
|
|
return model, trainer_options, num_train_samples
|
|
|
|
|
|
def test_trainer_max_steps_and_epochs(tmpdir):
|
|
"""Verify model trains according to specified max steps"""
|
|
model, trainer_options, num_train_samples = _init_steps_model()
|
|
|
|
# define less train steps than epochs
|
|
trainer_options.update(
|
|
default_root_dir=tmpdir,
|
|
max_epochs=3,
|
|
max_steps=num_train_samples + 10,
|
|
)
|
|
|
|
# fit model
|
|
trainer = Trainer(**trainer_options)
|
|
result = trainer.fit(model)
|
|
assert result == 1, "Training did not complete"
|
|
|
|
# check training stopped at max_steps
|
|
assert trainer.global_step == trainer.max_steps, "Model did not stop at max_steps"
|
|
|
|
# define less train epochs than steps
|
|
trainer_options.update(
|
|
max_epochs=2,
|
|
max_steps=trainer_options['max_epochs'] * 2 * num_train_samples,
|
|
)
|
|
|
|
# fit model
|
|
trainer = Trainer(**trainer_options)
|
|
result = trainer.fit(model)
|
|
assert result == 1, "Training did not complete"
|
|
|
|
# check training stopped at max_epochs
|
|
assert trainer.global_step == num_train_samples * trainer.max_epochs
|
|
assert trainer.current_epoch == trainer.max_epochs - 1, "Model did not stop at max_epochs"
|
|
|
|
|
|
def test_trainer_min_steps_and_epochs(tmpdir):
|
|
"""Verify model trains according to specified min steps"""
|
|
model, trainer_options, num_train_samples = _init_steps_model()
|
|
|
|
# define callback for stopping the model and default epochs
|
|
trainer_options.update(
|
|
default_root_dir=tmpdir,
|
|
early_stop_callback=EarlyStopping(monitor='early_stop_on', min_delta=1.0),
|
|
val_check_interval=2,
|
|
min_epochs=1,
|
|
max_epochs=7,
|
|
)
|
|
|
|
# define less min steps than 1 epoch
|
|
trainer_options['min_steps'] = math.floor(num_train_samples / 2)
|
|
|
|
# fit model
|
|
trainer = Trainer(**trainer_options)
|
|
result = trainer.fit(model)
|
|
assert result == 1, "Training did not complete"
|
|
|
|
# check model ran for at least min_epochs
|
|
assert trainer.global_step >= num_train_samples and \
|
|
trainer.current_epoch > 0, "Model did not train for at least min_epochs"
|
|
|
|
# define less epochs than min_steps
|
|
trainer_options['min_steps'] = math.floor(num_train_samples * 1.5)
|
|
|
|
# fit model
|
|
trainer = Trainer(**trainer_options)
|
|
result = trainer.fit(model)
|
|
assert result == 1, "Training did not complete"
|
|
|
|
# check model ran for at least num_train_samples*1.5
|
|
assert trainer.global_step >= math.floor(num_train_samples * 1.5) and \
|
|
trainer.current_epoch > 0, "Model did not train for at least min_steps"
|
|
|
|
|
|
def test_benchmark_option(tmpdir):
|
|
"""Verify benchmark option."""
|
|
|
|
model = EvalModelTemplate()
|
|
model.val_dataloader = model.val_dataloader__multiple
|
|
|
|
# verify torch.backends.cudnn.benchmark is not turned on
|
|
assert not torch.backends.cudnn.benchmark
|
|
|
|
# fit model
|
|
trainer = Trainer(
|
|
default_root_dir=tmpdir,
|
|
max_epochs=1,
|
|
benchmark=True,
|
|
)
|
|
result = trainer.fit(model)
|
|
|
|
# verify training completed
|
|
assert result == 1
|
|
|
|
# verify torch.backends.cudnn.benchmark is not turned off
|
|
assert torch.backends.cudnn.benchmark
|
|
|
|
|
|
@pytest.mark.parametrize('ckpt_path', [None, 'best', 'specific'])
|
|
@pytest.mark.parametrize('save_top_k', [-1, 0, 1, 2])
|
|
def test_test_checkpoint_path(tmpdir, ckpt_path, save_top_k):
|
|
hparams = EvalModelTemplate.get_default_hparams()
|
|
|
|
model = EvalModelTemplate(**hparams)
|
|
trainer = Trainer(
|
|
max_epochs=2,
|
|
progress_bar_refresh_rate=0,
|
|
default_root_dir=tmpdir,
|
|
checkpoint_callback=ModelCheckpoint(monitor='early_stop_on', save_top_k=save_top_k),
|
|
)
|
|
trainer.fit(model)
|
|
if ckpt_path == 'best':
|
|
# ckpt_path is 'best', meaning we load the best weights
|
|
if save_top_k == 0:
|
|
with pytest.raises(MisconfigurationException, match='.*is not configured to save the best.*'):
|
|
trainer.test(ckpt_path=ckpt_path)
|
|
else:
|
|
trainer.test(ckpt_path=ckpt_path)
|
|
assert trainer.tested_ckpt_path == trainer.checkpoint_callback.best_model_path
|
|
elif ckpt_path is None:
|
|
# ckpt_path is None, meaning we don't load any checkpoints and
|
|
# use the weights from the end of training
|
|
trainer.test(ckpt_path=ckpt_path)
|
|
assert trainer.tested_ckpt_path is None
|
|
else:
|
|
# specific checkpoint, pick one from saved ones
|
|
if save_top_k == 0:
|
|
with pytest.raises(FileNotFoundError):
|
|
trainer.test(ckpt_path='random.ckpt')
|
|
else:
|
|
ckpt_path = str(list((Path(tmpdir) / f'lightning_logs/version_{trainer.logger.version}/checkpoints').iterdir())[0].absolute())
|
|
trainer.test(ckpt_path=ckpt_path)
|
|
assert trainer.tested_ckpt_path == ckpt_path
|
|
|
|
|
|
def test_disabled_validation(tmpdir):
|
|
"""Verify that `limit_val_batches=0` disables the validation loop unless `fast_dev_run=True`."""
|
|
|
|
class CurrentModel(EvalModelTemplate):
|
|
|
|
validation_step_invoked = False
|
|
validation_epoch_end_invoked = False
|
|
|
|
def validation_step(self, *args, **kwargs):
|
|
self.validation_step_invoked = True
|
|
return super().validation_step(*args, **kwargs)
|
|
|
|
def validation_epoch_end(self, *args, **kwargs):
|
|
self.validation_epoch_end_invoked = True
|
|
return super().validation_epoch_end(*args, **kwargs)
|
|
|
|
hparams = EvalModelTemplate.get_default_hparams()
|
|
model = CurrentModel(**hparams)
|
|
|
|
trainer_options = dict(
|
|
default_root_dir=tmpdir,
|
|
progress_bar_refresh_rate=0,
|
|
max_epochs=2,
|
|
limit_train_batches=0.4,
|
|
limit_val_batches=0.0,
|
|
fast_dev_run=False,
|
|
)
|
|
|
|
trainer = Trainer(**trainer_options)
|
|
result = trainer.fit(model)
|
|
|
|
# check that limit_val_batches=0 turns off validation
|
|
assert result == 1, 'training failed to complete'
|
|
assert trainer.current_epoch == 1
|
|
assert not model.validation_step_invoked, \
|
|
'`validation_step` should not run when `limit_val_batches=0`'
|
|
assert not model.validation_epoch_end_invoked, \
|
|
'`validation_epoch_end` should not run when `limit_val_batches=0`'
|
|
|
|
# check that limit_val_batches has no influence when fast_dev_run is turned on
|
|
model = CurrentModel(**hparams)
|
|
trainer_options.update(fast_dev_run=True)
|
|
trainer = Trainer(**trainer_options)
|
|
result = trainer.fit(model)
|
|
|
|
assert result == 1, 'training failed to complete'
|
|
assert trainer.current_epoch == 0
|
|
assert model.validation_step_invoked, \
|
|
'did not run `validation_step` with `fast_dev_run=True`'
|
|
assert model.validation_epoch_end_invoked, \
|
|
'did not run `validation_epoch_end` with `fast_dev_run=True`'
|
|
|
|
|
|
def test_nan_loss_detection(tmpdir):
|
|
|
|
class CurrentModel(EvalModelTemplate):
|
|
test_batch_inf_loss = 8
|
|
|
|
def training_step(self, batch, batch_idx, optimizer_idx=None):
|
|
output = super().training_step(batch, batch_idx, optimizer_idx)
|
|
if batch_idx == self.test_batch_inf_loss:
|
|
if isinstance(output, dict):
|
|
output['loss'] *= torch.tensor(math.inf) # make loss infinite
|
|
else:
|
|
output /= 0
|
|
return output
|
|
|
|
model = CurrentModel()
|
|
|
|
# fit model
|
|
trainer = Trainer(
|
|
default_root_dir=tmpdir,
|
|
max_steps=(model.test_batch_inf_loss + 1),
|
|
terminate_on_nan=True,
|
|
)
|
|
|
|
with pytest.raises(ValueError, match=r'.*The loss returned in `training_step` is nan or inf.*'):
|
|
trainer.fit(model)
|
|
assert trainer.global_step == model.test_step_inf_loss
|
|
|
|
for param in model.parameters():
|
|
assert torch.isfinite(param).all()
|
|
|
|
|
|
def test_nan_params_detection(tmpdir):
|
|
|
|
class CurrentModel(EvalModelTemplate):
|
|
test_batch_nan = 8
|
|
|
|
def on_after_backward(self):
|
|
if self.global_step == self.test_batch_nan:
|
|
# simulate parameter that became nan
|
|
torch.nn.init.constant_(self.c_d1.bias, math.nan)
|
|
|
|
model = CurrentModel()
|
|
trainer = Trainer(
|
|
default_root_dir=tmpdir,
|
|
max_steps=(model.test_batch_nan + 1),
|
|
terminate_on_nan=True,
|
|
)
|
|
|
|
with pytest.raises(ValueError, match=r'.*Detected nan and/or inf values in `c_d1.bias`.*'):
|
|
trainer.fit(model)
|
|
assert trainer.global_step == model.test_batch_nan
|
|
|
|
# after aborting the training loop, model still has nan-valued params
|
|
params = torch.cat([param.view(-1) for param in model.parameters()])
|
|
assert not torch.isfinite(params).all()
|
|
|
|
|
|
def test_trainer_interrupted_flag(tmpdir):
|
|
"""Test the flag denoting that a user interrupted training."""
|
|
|
|
model = EvalModelTemplate()
|
|
|
|
class InterruptCallback(Callback):
|
|
def __init__(self):
|
|
super().__init__()
|
|
|
|
def on_train_batch_start(self, trainer, pl_module, batch, batch_idx, dataloader_idx):
|
|
raise KeyboardInterrupt
|
|
|
|
class HandleInterruptCallback(Callback):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.exc_info = None
|
|
|
|
def on_keyboard_interrupt(self, trainer, pl_module):
|
|
self.exc_info = sys.exc_info()
|
|
|
|
interrupt_callback = InterruptCallback()
|
|
handle_interrupt_callback = HandleInterruptCallback()
|
|
|
|
trainer = Trainer(
|
|
callbacks=[interrupt_callback, handle_interrupt_callback],
|
|
max_epochs=1,
|
|
limit_val_batches=0.1,
|
|
limit_train_batches=0.2,
|
|
progress_bar_refresh_rate=0,
|
|
logger=False,
|
|
default_root_dir=tmpdir,
|
|
)
|
|
assert not trainer.interrupted
|
|
assert handle_interrupt_callback.exc_info is None
|
|
trainer.fit(model)
|
|
assert trainer.interrupted
|
|
assert isinstance(handle_interrupt_callback.exc_info[1], KeyboardInterrupt)
|
|
|
|
|
|
def test_gradient_clipping(tmpdir):
|
|
"""
|
|
Test gradient clipping
|
|
"""
|
|
|
|
model = EvalModelTemplate()
|
|
|
|
# test that gradient is clipped correctly
|
|
def _optimizer_step(*args, **kwargs):
|
|
parameters = model.parameters()
|
|
grad_norm = torch.norm(torch.stack([torch.norm(p.grad.detach(), 2) for p in parameters]), 2)
|
|
assert (grad_norm - 1.0).abs() < 0.01, "Gradient norm != 1.0: {grad_norm}".format(grad_norm=grad_norm)
|
|
|
|
trainer = Trainer(
|
|
max_steps=1,
|
|
max_epochs=1,
|
|
gradient_clip_val=1.0,
|
|
default_root_dir=tmpdir,
|
|
)
|
|
|
|
# for the test
|
|
model.optimizer_step = _optimizer_step
|
|
model.prev_called_batch_idx = 0
|
|
|
|
trainer.fit(model)
|
|
|
|
|
|
@pytest.mark.skipif(not torch.cuda.is_available(), reason="test requires GPU machine")
|
|
@pytest.mark.skipif(not NATIVE_AMP_AVALAIBLE, reason="test requires native AMP.")
|
|
def test_gradient_clipping_fp16(tmpdir):
|
|
"""
|
|
Test gradient clipping with fp16
|
|
"""
|
|
|
|
model = EvalModelTemplate()
|
|
|
|
# test that gradient is clipped correctly
|
|
def _optimizer_step(*args, **kwargs):
|
|
parameters = model.parameters()
|
|
grad_norm = torch.norm(torch.stack([torch.norm(p.grad.detach(), 2) for p in parameters]), 2)
|
|
assert (grad_norm - 1.0).abs() < 0.01, "Gradient norm != 1.0: {grad_norm}".format(grad_norm=grad_norm)
|
|
|
|
trainer = Trainer(
|
|
max_steps=1,
|
|
max_epochs=1,
|
|
precision=16,
|
|
gpus=1,
|
|
gradient_clip_val=1.0,
|
|
default_root_dir=tmpdir,
|
|
)
|
|
|
|
# for the test
|
|
model.optimizer_step = _optimizer_step
|
|
model.prev_called_batch_idx = 0
|
|
|
|
trainer.fit(model)
|
|
|
|
|
|
def test_gpu_choice(tmpdir):
|
|
trainer_options = dict(
|
|
default_root_dir=tmpdir,
|
|
)
|
|
# Only run if CUDA is available
|
|
if not torch.cuda.is_available():
|
|
return
|
|
|
|
num_gpus = torch.cuda.device_count()
|
|
Trainer(**trainer_options, gpus=num_gpus, auto_select_gpus=True)
|
|
|
|
with pytest.raises(RuntimeError, match=r'.*No GPUs available.*'):
|
|
Trainer(**trainer_options, gpus=num_gpus + 1, auto_select_gpus=True)
|
|
|
|
|
|
@pytest.mark.parametrize(['tpu_cores', 'expected_tpu_id', 'error_expected'], [
|
|
pytest.param(1, None, False),
|
|
pytest.param(8, None, False),
|
|
pytest.param([1], 1, False),
|
|
pytest.param([8], 8, False),
|
|
pytest.param('1,', 1, False),
|
|
pytest.param('1', None, False),
|
|
pytest.param('9, ', 9, True),
|
|
pytest.param([9], 9, True),
|
|
pytest.param([0], 0, True),
|
|
pytest.param(2, None, True),
|
|
pytest.param(10, None, True),
|
|
])
|
|
def test_tpu_choice(tmpdir, tpu_cores, expected_tpu_id, error_expected):
|
|
if error_expected:
|
|
with pytest.raises(MisconfigurationException, match=r'.*tpu_cores` can only be 1, 8 or [<1-8>]*'):
|
|
Trainer(default_root_dir=tmpdir, tpu_cores=tpu_cores, auto_select_gpus=True)
|
|
else:
|
|
trainer = Trainer(default_root_dir=tmpdir, tpu_cores=tpu_cores, auto_select_gpus=True)
|
|
assert trainer.tpu_id == expected_tpu_id
|
|
|
|
|
|
@pytest.mark.parametrize(['limit_val_batches'], [
|
|
pytest.param(0.0), # this should run no sanity checks
|
|
pytest.param(1),
|
|
pytest.param(1.0),
|
|
pytest.param(0.5),
|
|
pytest.param(5),
|
|
])
|
|
def test_num_sanity_val_steps(tmpdir, limit_val_batches):
|
|
"""
|
|
Test that the number of sanity check batches is clipped to `limit_val_batches`.
|
|
"""
|
|
model = EvalModelTemplate()
|
|
model.validation_step = model.validation_step__multiple_dataloaders
|
|
model.validation_epoch_end = model.validation_epoch_end__multiple_dataloaders
|
|
num_sanity_val_steps = 4
|
|
|
|
trainer = Trainer(
|
|
default_root_dir=tmpdir,
|
|
num_sanity_val_steps=num_sanity_val_steps,
|
|
limit_val_batches=limit_val_batches,
|
|
max_steps=1,
|
|
)
|
|
assert trainer.num_sanity_val_steps == num_sanity_val_steps
|
|
|
|
with patch.object(
|
|
trainer.evaluation_loop, 'evaluation_step', wraps=trainer.evaluation_loop.evaluation_step
|
|
) as mocked:
|
|
val_dataloaders = model.val_dataloader__multiple_mixed_length()
|
|
trainer.fit(model, val_dataloaders=val_dataloaders)
|
|
|
|
assert mocked.call_count == sum(
|
|
min(num_sanity_val_steps, num_batches) for num_batches in trainer.num_val_batches
|
|
)
|
|
|
|
|
|
@pytest.mark.parametrize(['limit_val_batches'], [
|
|
pytest.param(0.0), # this should run no sanity checks
|
|
pytest.param(1),
|
|
pytest.param(1.0),
|
|
pytest.param(0.3),
|
|
])
|
|
def test_num_sanity_val_steps_neg_one(tmpdir, limit_val_batches):
|
|
"""
|
|
Test that `num_sanity_val_steps=-1` runs through all validation data once, and as many batches as
|
|
limited by `limit_val_batches` Trainer argument.
|
|
"""
|
|
model = EvalModelTemplate()
|
|
model.validation_step = model.validation_step__multiple_dataloaders
|
|
model.validation_epoch_end = model.validation_epoch_end__multiple_dataloaders
|
|
trainer = Trainer(
|
|
default_root_dir=tmpdir,
|
|
num_sanity_val_steps=-1,
|
|
limit_val_batches=limit_val_batches,
|
|
max_steps=1,
|
|
)
|
|
assert trainer.num_sanity_val_steps == float('inf')
|
|
|
|
with patch.object(
|
|
trainer.evaluation_loop, 'evaluation_step', wraps=trainer.evaluation_loop.evaluation_step
|
|
) as mocked:
|
|
val_dataloaders = model.val_dataloader__multiple()
|
|
trainer.fit(model, val_dataloaders=val_dataloaders)
|
|
|
|
assert mocked.call_count == sum(trainer.num_val_batches)
|
|
|
|
|
|
@pytest.mark.parametrize("trainer_kwargs,expected", [
|
|
pytest.param(
|
|
dict(distributed_backend=None, gpus=None),
|
|
dict(use_dp=False, use_ddp=False, use_ddp2=False, num_gpus=0, on_gpu=False, use_single_gpu=False, num_processes=1)
|
|
),
|
|
pytest.param(
|
|
dict(distributed_backend="dp", gpus=None),
|
|
dict(use_dp=False, use_ddp=False, use_ddp2=False, num_gpus=0, on_gpu=False, use_single_gpu=False, num_processes=1)
|
|
),
|
|
pytest.param(
|
|
dict(distributed_backend="dp", gpus=None),
|
|
dict(use_dp=False, use_ddp=False, use_ddp2=False, num_gpus=0, on_gpu=False, use_single_gpu=False, num_processes=1)
|
|
),
|
|
pytest.param(
|
|
dict(distributed_backend="ddp", gpus=None),
|
|
dict(use_dp=False, use_ddp=False, use_ddp2=False, num_gpus=0, on_gpu=False, use_single_gpu=False, num_processes=1)
|
|
),
|
|
pytest.param(
|
|
dict(distributed_backend="ddp", num_processes=2, gpus=None),
|
|
dict(use_dp=False, use_ddp=True, use_ddp2=False, num_gpus=0, on_gpu=False, use_single_gpu=False, num_processes=2)
|
|
),
|
|
pytest.param(
|
|
dict(distributed_backend="ddp", num_nodes=2, gpus=None),
|
|
dict(use_dp=False, use_ddp=True, use_ddp2=False, num_gpus=0, on_gpu=False, use_single_gpu=False, num_processes=1)
|
|
),
|
|
pytest.param(
|
|
dict(distributed_backend="ddp_cpu", num_processes=2, gpus=None),
|
|
dict(use_dp=False, use_ddp=True, use_ddp2=False, num_gpus=0, on_gpu=False, use_single_gpu=False, num_processes=2)
|
|
),
|
|
pytest.param(
|
|
dict(distributed_backend="ddp2", gpus=None),
|
|
dict(use_dp=False, use_ddp=False, use_ddp2=False, num_gpus=0, on_gpu=False, use_single_gpu=False, num_processes=1)
|
|
),
|
|
pytest.param(
|
|
dict(distributed_backend=None, gpus=1),
|
|
dict(use_dp=False, use_ddp=False, use_ddp2=False, num_gpus=1, on_gpu=True, use_single_gpu=True, num_processes=1),
|
|
marks=[pytest.mark.skipif(torch.cuda.device_count() == 0, reason="GPU needed")]
|
|
),
|
|
pytest.param(
|
|
dict(distributed_backend="dp", gpus=1),
|
|
dict(use_dp=True, use_ddp=False, use_ddp2=False, num_gpus=1, on_gpu=True, use_single_gpu=True, num_processes=1),
|
|
marks=[pytest.mark.skipif(torch.cuda.device_count() == 0, reason="GPU needed")]
|
|
),
|
|
pytest.param(
|
|
dict(distributed_backend="ddp", gpus=1),
|
|
dict(use_dp=False, use_ddp=True, use_ddp2=False, num_gpus=1, on_gpu=True, use_single_gpu=True, num_processes=1),
|
|
marks=[pytest.mark.skipif(torch.cuda.device_count() == 0, reason="GPU needed")]
|
|
),
|
|
pytest.param(
|
|
dict(distributed_backend="ddp_cpu", num_processes=2, gpus=1),
|
|
dict(use_dp=False, use_ddp=True, use_ddp2=False, num_gpus=0, on_gpu=False, use_single_gpu=False, num_processes=2),
|
|
marks=[pytest.mark.skipif(torch.cuda.device_count() == 0, reason="GPU needed")]
|
|
),
|
|
pytest.param(
|
|
dict(distributed_backend="ddp2", gpus=1),
|
|
dict(use_dp=False, use_ddp=False, use_ddp2=True, num_gpus=1, on_gpu=True, use_single_gpu=False, num_processes=1),
|
|
marks=[pytest.mark.skipif(torch.cuda.device_count() == 0, reason="GPU needed")]
|
|
),
|
|
pytest.param(
|
|
dict(distributed_backend=None, gpus=2),
|
|
dict(use_dp=False, use_ddp=True, use_ddp2=False, num_gpus=2, on_gpu=True, use_single_gpu=False, num_processes=2),
|
|
marks=[pytest.mark.skipif(torch.cuda.device_count() < 2, reason="Multiple GPUs needed")]
|
|
),
|
|
pytest.param(
|
|
dict(distributed_backend="dp", gpus=2),
|
|
dict(use_dp=True, use_ddp=False, use_ddp2=False, num_gpus=2, on_gpu=True, use_single_gpu=False, num_processes=1),
|
|
marks=[pytest.mark.skipif(torch.cuda.device_count() < 2, reason="Multiple GPUs needed")]
|
|
),
|
|
pytest.param(
|
|
dict(distributed_backend="ddp", gpus=2),
|
|
dict(use_dp=False, use_ddp=True, use_ddp2=False, num_gpus=2, on_gpu=True, use_single_gpu=False, num_processes=2),
|
|
marks=[pytest.mark.skipif(torch.cuda.device_count() < 2, reason="Multiple GPUs needed")]
|
|
),
|
|
pytest.param(
|
|
dict(distributed_backend="ddp2", gpus=2),
|
|
dict(use_dp=False, use_ddp=False, use_ddp2=True, num_gpus=2, on_gpu=True, use_single_gpu=False, num_processes=1),
|
|
marks=[pytest.mark.skipif(torch.cuda.device_count() < 2, reason="Multiple GPUs needed")]
|
|
),
|
|
])
|
|
def test_trainer_config(trainer_kwargs, expected):
|
|
trainer = Trainer(**trainer_kwargs)
|
|
assert trainer.use_dp is expected["use_dp"]
|
|
assert trainer.use_ddp is expected["use_ddp"]
|
|
assert trainer.use_ddp2 is expected["use_ddp2"]
|
|
assert trainer.num_gpus == expected["num_gpus"]
|
|
assert trainer.on_gpu is expected["on_gpu"]
|
|
assert trainer.use_single_gpu is expected["use_single_gpu"]
|
|
assert trainer.num_processes == expected["num_processes"]
|
|
|
|
|
|
def test_trainer_subclassing():
|
|
model = EvalModelTemplate()
|
|
|
|
# First way of pulling out args from signature is to list them
|
|
class TrainerSubclass(Trainer):
|
|
|
|
def __init__(self, custom_arg, *args, custom_kwarg='test', **kwargs):
|
|
super().__init__(*args, **kwargs)
|
|
self.custom_arg = custom_arg
|
|
self.custom_kwarg = custom_kwarg
|
|
|
|
trainer = TrainerSubclass(123, custom_kwarg='custom', fast_dev_run=True)
|
|
result = trainer.fit(model)
|
|
assert result == 1
|
|
assert trainer.custom_arg == 123
|
|
assert trainer.custom_kwarg == 'custom'
|
|
assert trainer.fast_dev_run
|
|
|
|
# Second way is to pop from the dict
|
|
# It's a special case because Trainer does not have any positional args
|
|
class TrainerSubclass(Trainer):
|
|
|
|
def __init__(self, **kwargs):
|
|
self.custom_arg = kwargs.pop('custom_arg', 0)
|
|
self.custom_kwarg = kwargs.pop('custom_kwarg', 'test')
|
|
super().__init__(**kwargs)
|
|
|
|
trainer = TrainerSubclass(custom_kwarg='custom', fast_dev_run=True)
|
|
result = trainer.fit(model)
|
|
assert result == 1
|
|
assert trainer.custom_kwarg == 'custom'
|
|
assert trainer.fast_dev_run
|
|
|
|
# when we pass in an unknown arg, the base class should complain
|
|
with pytest.raises(TypeError, match=r"__init__\(\) got an unexpected keyword argument 'abcdefg'"):
|
|
TrainerSubclass(abcdefg='unknown_arg')
|
|
|
|
|
|
@pytest.mark.parametrize('trainer_params', [
|
|
OmegaConf.create({'max_epochs': 1, 'gpus': 1}),
|
|
OmegaConf.create({'max_epochs': 1, 'gpus': [0]}),
|
|
])
|
|
@pytest.mark.skipif(not torch.cuda.is_available(), reason="test requires GPU machine")
|
|
def test_trainer_omegaconf(trainer_params):
|
|
Trainer(**trainer_params)
|
|
|
|
|
|
def test_trainer_pickle(tmpdir):
|
|
trainer = Trainer(
|
|
max_epochs=1,
|
|
default_root_dir=tmpdir,
|
|
)
|
|
pickle.dumps(trainer)
|
|
cloudpickle.dumps(trainer)
|
|
|
|
|
|
def test_trainer_setup_call(tmpdir):
|
|
"""Test setup call with fit and test call."""
|
|
|
|
class CurrentModel(EvalModelTemplate):
|
|
|
|
def setup(self, stage):
|
|
self.stage = stage
|
|
|
|
class TrainerSubclass(Trainer):
|
|
|
|
def setup(self, stage):
|
|
self.stage = stage
|
|
|
|
model = CurrentModel()
|
|
|
|
# fit model
|
|
trainer = TrainerSubclass(
|
|
default_root_dir=tmpdir,
|
|
max_epochs=1,
|
|
checkpoint_callback=False
|
|
)
|
|
|
|
trainer.fit(model)
|
|
assert trainer.stage == 'fit'
|
|
assert trainer.get_model().stage == 'fit'
|
|
|
|
trainer.test(ckpt_path=None)
|
|
assert trainer.stage == 'test'
|
|
assert trainer.get_model().stage == 'test'
|
|
|
|
|
|
@pytest.mark.parametrize("train_batches, max_steps, log_interval", [
|
|
pytest.param(10, 10, 1),
|
|
pytest.param(3, 10, 1),
|
|
pytest.param(3, 10, 5),
|
|
])
|
|
@patch("pytorch_lightning.loggers.tensorboard.TensorBoardLogger.log_metrics")
|
|
def test_log_every_n_steps(log_metrics_mock, tmpdir, train_batches, max_steps, log_interval):
|
|
model = EvalModelTemplate()
|
|
trainer = Trainer(
|
|
default_root_dir=tmpdir,
|
|
log_every_n_steps=log_interval,
|
|
flush_logs_every_n_steps=log_interval,
|
|
limit_train_batches=train_batches,
|
|
limit_val_batches=0,
|
|
max_steps=max_steps,
|
|
)
|
|
trainer.fit(model)
|
|
expected_calls = [call(metrics=ANY, step=s) for s in range(log_interval - 1, max_steps, log_interval)]
|
|
log_metrics_mock.assert_has_calls(expected_calls)
|