lightning/tests/models/test_amp.py

176 lines
4.8 KiB
Python

import os
from unittest.mock import MagicMock
import pytest
import torch
import wandb
import tests.base.develop_pipelines as tpipes
import tests.base.develop_utils as tutils
from pytorch_lightning import Trainer
from pytorch_lightning.utilities.exceptions import MisconfigurationException
from tests.base import EvalModelTemplate
@pytest.mark.skipif(torch.cuda.device_count() < 2, reason="test requires multi-GPU machine")
def test_multi_gpu_wandb_ddp_spawn(tmpdir):
"""Make sure DP/DDP + AMP work."""
from pytorch_lightning.loggers import WandbLogger
tutils.set_random_master_port()
model = EvalModelTemplate()
wandb.run = MagicMock()
wandb.init(name='name', project='project')
logger = WandbLogger(name='name', offline=True)
trainer_options = dict(
default_root_dir=tmpdir,
max_epochs=1,
gpus=2,
distributed_backend='ddp_spawn',
precision=16,
logger=logger,
)
# tutils.run_model_test(trainer_options, model)
trainer = Trainer(**trainer_options)
result = trainer.fit(model)
assert result
trainer.test(model)
@pytest.mark.skip(reason='dp + amp not supported currently') # TODO
@pytest.mark.skipif(not torch.cuda.is_available(), reason="test requires GPU machine")
def test_amp_single_gpu_dp(tmpdir):
"""Make sure DP/DDP + AMP work."""
tutils.reset_seed()
trainer = Trainer(
default_root_dir=tmpdir,
max_epochs=1,
gpus=1,
distributed_backend='dp',
precision=16,
)
model = EvalModelTemplate()
# tutils.run_model_test(trainer_options, model)
result = trainer.fit(model)
assert result == 1
@pytest.mark.skipif(not torch.cuda.is_available(), reason="test requires GPU machine")
def test_amp_single_gpu_ddp_spawn(tmpdir):
"""Make sure DP/DDP + AMP work."""
tutils.reset_seed()
trainer = Trainer(
default_root_dir=tmpdir,
max_epochs=1,
gpus=1,
distributed_backend='ddp_spawn',
precision=16,
)
model = EvalModelTemplate()
# tutils.run_model_test(trainer_options, model)
result = trainer.fit(model)
assert result == 1
@pytest.mark.skip(reason='dp + amp not supported currently') # TODO
@pytest.mark.skipif(not torch.cuda.is_available(), reason="test requires GPU machine")
def test_amp_multi_gpu_dp(tmpdir):
"""Make sure DP/DDP + AMP work."""
tutils.reset_seed()
trainer = Trainer(
default_root_dir=tmpdir,
max_epochs=1,
gpus=2,
distributed_backend='dp',
precision=16,
)
model = EvalModelTemplate()
# tutils.run_model_test(trainer_options, model)
result = trainer.fit(model)
assert result == 1
@pytest.mark.skipif(torch.cuda.device_count() < 2, reason="test requires multi-GPU machine")
def test_amp_multi_gpu_ddp_spawn(tmpdir):
"""Make sure DP/DDP + AMP work."""
tutils.reset_seed()
trainer = Trainer(
default_root_dir=tmpdir,
max_epochs=1,
gpus=2,
distributed_backend='ddp_spawn',
precision=16,
)
model = EvalModelTemplate()
# tutils.run_model_test(trainer_options, model)
result = trainer.fit(model)
assert result == 1
@pytest.mark.skipif(torch.cuda.device_count() < 2, reason="test requires multi-GPU machine")
def test_amp_gpu_ddp_slurm_managed(tmpdir):
"""Make sure DDP + AMP work."""
# simulate setting slurm flags
tutils.set_random_master_port()
os.environ['SLURM_LOCALID'] = str(0)
model = EvalModelTemplate()
# exp file to get meta
logger = tutils.get_default_logger(tmpdir)
# exp file to get weights
checkpoint = tutils.init_checkpoint_callback(logger)
# fit model
trainer = Trainer(
default_root_dir=tmpdir,
max_epochs=1,
gpus=[0],
distributed_backend='ddp_spawn',
precision=16,
checkpoint_callback=checkpoint,
logger=logger,
)
trainer.is_slurm_managing_tasks = True
result = trainer.fit(model)
# correct result and ok accuracy
assert result == 1, 'amp + ddp model failed to complete'
# test root model address
assert trainer.resolve_root_node_address('abc') == 'abc'
assert trainer.resolve_root_node_address('abc[23]') == 'abc23'
assert trainer.resolve_root_node_address('abc[23-24]') == 'abc23'
assert trainer.resolve_root_node_address('abc[23-24, 45-40, 40]') == 'abc23'
def test_cpu_model_with_amp(tmpdir):
"""Make sure model trains on CPU."""
trainer_options = dict(
default_root_dir=tmpdir,
progress_bar_refresh_rate=0,
max_epochs=1,
limit_train_batches=0.4,
limit_val_batches=0.4,
precision=16
)
model = EvalModelTemplate()
with pytest.raises((MisconfigurationException, ModuleNotFoundError)):
tpipes.run_model_test(trainer_options, model, on_gpu=False)