lightning/dockers
Akihiro Nitta d5f35ece72
CI/CD: Add CUDA version to docker image tags (#13831)
* append cuda version to tags

* revertme: push to hub

* Update docker readme

* Build base-conda-py3.9-torch1.12-cuda11.3.1

* Use new images in conda tests

* revertme: push to hub

* Revert "revertme: push to hub"

This reverts commit 0f7d534b2a.

* Revert "revertme: push to hub"

This reverts commit 46a05fccbb.

* Run conda if workflow edited

* Run gpu testing if workflow edited

* Use new tags in release/Dockerfile

* Build base-cuda and PL release images with all combinations

* Update release docker

* Update conda from py3.9-torch1.12 to py3.10-torch.1.12

* Fix ubuntu version

* Revert conda

* revertme: push to hub

* Don't build Python 3.10 for now...

* Fix pl release builder

* updating version contribute to the error? https://github.com/docker/buildx/issues/456

* Update actions' versions

* Update slack user to notify

* Don't use 11.6.0 to avoid bagua incompatibility

* Don't use 11.1, and use 11.1.1

* Update .github/workflows/ci-pytorch_test-conda.yml

Co-authored-by: Luca Medeiros <67411094+luca-medeiros@users.noreply.github.com>

* Update trigger

* Ignore artfacts from tutorials

* Trim docker images to distribute

* Add an image for tutorials

* Update conda image 3.8x1.10

* Try different conda variants

* No need to set cuda for conda jobs

* Update who to notify ipu failure

* Don't push

* update filenaem

Co-authored-by: Luca Medeiros <67411094+luca-medeiros@users.noreply.github.com>
2022-08-10 10:37:50 +00:00
..
base-conda add testing PT 1.12 (#13386) 2022-07-15 19:41:23 +02:00
base-cuda Run GPU tests with PyTorch 1.12 (#13716) 2022-07-28 19:37:57 +05:30
base-ipu CI: fix requirements freeze (#13441) 2022-06-29 09:35:57 -04:00
base-xla CI: Update XLA from 1.9 to 1.12 (#14013) 2022-08-05 05:04:45 -04:00
ci-runner-hpu CI: debug HPU flow (#13419) 2022-07-20 12:35:01 +02:00
ci-runner-ipu Drop PyTorch 1.8 support (#13155) 2022-06-14 20:46:44 -04:00
nvidia bump base NGC image (#13346) 2022-07-15 21:36:19 +00:00
release CI/CD: Add CUDA version to docker image tags (#13831) 2022-08-10 10:37:50 +00:00
tpu-tests Improvements to standalone scripts (#13840) 2022-07-28 23:33:22 +00:00
README.md CI/CD: Add CUDA version to docker image tags (#13831) 2022-08-10 10:37:50 +00:00

README.md

Docker images

Build images from Dockerfiles

You can build it on your own, note it takes lots of time, be prepared.

git clone https://github.com/Lightning-AI/lightning.git

# build with the default arguments
docker image build -t pytorch-lightning:latest -f dockers/base-cuda/Dockerfile .

# build with specific arguments
docker image build -t pytorch-lightning:base-cuda-py3.9-torch1.11-cuda11.3.1 -f dockers/base-cuda/Dockerfile --build-arg PYTHON_VERSION=3.9 --build-arg PYTORCH_VERSION=1.11 --build-arg CUDA_VERSION=11.3.1 .

To run your docker use

docker image list
docker run --rm -it pytorch-lightning:latest bash

and if you do not need it anymore, just clean it:

docker image list
docker image rm pytorch-lightning:latest

Run docker image with GPUs

To run docker image with access to your GPUs, you need to install

# Add the package repositories
distribution=$(. /etc/os-release;echo $ID$VERSION_ID)
curl -s -L https://nvidia.github.io/nvidia-docker/gpgkey | sudo apt-key add -
curl -s -L https://nvidia.github.io/nvidia-docker/$distribution/nvidia-docker.list | sudo tee /etc/apt/sources.list.d/nvidia-docker.list

sudo apt-get update && sudo apt-get install -y nvidia-container-toolkit
sudo systemctl restart docker

and later run the docker image with --gpus all. For example,

docker run --rm -it --gpus all pytorchlightning/pytorch_lightning:base-cuda-py3.9-torch1.11-cuda11.3.1

Run Jupyter server

Inspiration comes from https://u.group/thinking/how-to-put-jupyter-notebooks-in-a-dockerfile

  1. Build the docker image:
    docker image build -t pytorch-lightning:v1.6.5 -f dockers/nvidia/Dockerfile --build-arg LIGHTNING_VERSION=1.6.5 .
    
  2. start the server and map ports:
    docker run --rm -it --runtime=nvidia -e NVIDIA_VISIBLE_DEVICES=all -p 8888:8888 pytorch-lightning:v1.6.5
    
  3. Connect in local browser:
    • copy the generated path e.g. http://hostname:8888/?token=0719fa7e1729778b0cec363541a608d5003e26d4910983c6
    • replace the hostname by localhost