189 lines
7.7 KiB
Python
189 lines
7.7 KiB
Python
# Copyright The PyTorch Lightning team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import os
|
|
import platform
|
|
from unittest import mock
|
|
|
|
import pytest
|
|
import torch
|
|
from torch import nn
|
|
from torch.utils.data import DataLoader
|
|
|
|
from pytorch_lightning import Trainer
|
|
from pytorch_lightning.utilities import _TORCH_GREATER_EQUAL_1_6
|
|
from pytorch_lightning.utilities.exceptions import MisconfigurationException
|
|
from tests.helpers import BoringModel, RandomDataset
|
|
|
|
if _TORCH_GREATER_EQUAL_1_6:
|
|
from pytorch_lightning.callbacks import StochasticWeightAveraging
|
|
|
|
class SwaTestModel(BoringModel):
|
|
|
|
def __init__(self, batchnorm: bool = True):
|
|
super().__init__()
|
|
layers = [nn.Linear(32, 32)]
|
|
if batchnorm:
|
|
layers.append(nn.BatchNorm1d(32))
|
|
layers += [nn.ReLU(), nn.Linear(32, 2)]
|
|
self.layer = nn.Sequential(*layers)
|
|
|
|
def training_step(self, batch, batch_idx):
|
|
output = self.forward(batch)
|
|
loss = self.loss(batch, output)
|
|
return {"loss": loss}
|
|
|
|
def train_dataloader(self):
|
|
return DataLoader(RandomDataset(32, 64), batch_size=2)
|
|
|
|
class SwaTestCallback(StochasticWeightAveraging):
|
|
update_parameters_calls: int = 0
|
|
transfer_weights_calls: int = 0
|
|
|
|
def update_parameters(self, *args, **kwargs):
|
|
self.update_parameters_calls += 1
|
|
return StochasticWeightAveraging.update_parameters(*args, **kwargs)
|
|
|
|
def transfer_weights(self, *args, **kwargs):
|
|
self.transfer_weights_calls += 1
|
|
return StochasticWeightAveraging.transfer_weights(*args, **kwargs)
|
|
|
|
def on_train_epoch_start(self, trainer, *args):
|
|
super().on_train_epoch_start(trainer, *args)
|
|
assert trainer.train_loop._skip_backward == (trainer.current_epoch > self.swa_end)
|
|
|
|
def on_train_epoch_end(self, trainer, *args):
|
|
super().on_train_epoch_end(trainer, *args)
|
|
if self.swa_start <= trainer.current_epoch <= self.swa_end:
|
|
swa_epoch = trainer.current_epoch - self.swa_start
|
|
assert self.n_averaged == swa_epoch + 1
|
|
elif trainer.current_epoch > self.swa_end:
|
|
assert self.n_averaged == self._max_epochs - self.swa_start
|
|
|
|
def on_train_end(self, trainer, pl_module):
|
|
super().on_train_end(trainer, pl_module)
|
|
|
|
# make sure these are correctly set again
|
|
assert not trainer.train_loop._skip_backward
|
|
assert trainer.accumulate_grad_batches == 2
|
|
assert trainer.num_training_batches == 5
|
|
|
|
# check backward call count. the batchnorm update epoch should not backward
|
|
assert trainer.dev_debugger.count_events(
|
|
"backward_call"
|
|
) == trainer.max_epochs * trainer.limit_train_batches
|
|
|
|
# check call counts
|
|
assert self.update_parameters_calls == trainer.max_epochs - (self._swa_epoch_start - 1)
|
|
assert self.transfer_weights_calls == 1
|
|
|
|
|
|
@mock.patch.dict(os.environ, {"PL_DEV_DEBUG": "1"})
|
|
def train_with_swa(tmpdir, batchnorm=True, accelerator=None, gpus=None, num_processes=1):
|
|
model = SwaTestModel(batchnorm=batchnorm)
|
|
swa_start = 2
|
|
max_epochs = 5
|
|
swa_callback = SwaTestCallback(swa_epoch_start=swa_start, swa_lrs=0.1)
|
|
assert swa_callback.update_parameters_calls == 0
|
|
assert swa_callback.transfer_weights_calls == 0
|
|
|
|
trainer = Trainer(
|
|
default_root_dir=tmpdir,
|
|
max_epochs=max_epochs,
|
|
limit_train_batches=5,
|
|
limit_val_batches=0,
|
|
callbacks=[swa_callback],
|
|
accumulate_grad_batches=2,
|
|
accelerator=accelerator,
|
|
gpus=gpus,
|
|
num_processes=num_processes
|
|
)
|
|
trainer.fit(model)
|
|
|
|
# check the model is the expected
|
|
assert trainer.get_model() == model
|
|
|
|
|
|
@pytest.mark.skipif(not _TORCH_GREATER_EQUAL_1_6, reason="SWA available from PyTorch 1.6.0")
|
|
@pytest.mark.skipif(torch.cuda.device_count() < 2, reason="test requires multi-GPU machine")
|
|
@pytest.mark.skipif(
|
|
not os.getenv("PL_RUNNING_SPECIAL_TESTS", '0') == '1', reason="test should be run outside of pytest"
|
|
)
|
|
def test_swa_callback_ddp(tmpdir):
|
|
train_with_swa(tmpdir, accelerator="ddp", gpus=2)
|
|
|
|
|
|
@pytest.mark.skipif(not _TORCH_GREATER_EQUAL_1_6, reason="SWA available from PyTorch 1.6.0")
|
|
@pytest.mark.skipif(torch.cuda.device_count() < 2, reason="test requires multi-GPU machine")
|
|
def test_swa_callback_ddp_spawn(tmpdir):
|
|
train_with_swa(tmpdir, accelerator="ddp_spawn", gpus=2)
|
|
|
|
|
|
@pytest.mark.skipif(not _TORCH_GREATER_EQUAL_1_6, reason="SWA available from PyTorch 1.6.0")
|
|
@pytest.mark.skipif(platform.system() == "Windows", reason="ddp_cpu is not available on Windows")
|
|
def test_swa_callback_ddp_cpu(tmpdir):
|
|
train_with_swa(tmpdir, accelerator="ddp_cpu", num_processes=2)
|
|
|
|
|
|
@pytest.mark.skipif(not _TORCH_GREATER_EQUAL_1_6, reason="SWA available from PyTorch 1.6.0")
|
|
@pytest.mark.skipif(not torch.cuda.is_available(), reason="test requires a GPU machine")
|
|
def test_swa_callback_1_gpu(tmpdir):
|
|
train_with_swa(tmpdir, gpus=1)
|
|
|
|
|
|
@pytest.mark.skipif(not _TORCH_GREATER_EQUAL_1_6, reason="SWA available from PyTorch 1.6.0")
|
|
@pytest.mark.parametrize("batchnorm", (True, False))
|
|
def test_swa_callback(tmpdir, batchnorm):
|
|
train_with_swa(tmpdir, batchnorm=batchnorm)
|
|
|
|
|
|
@pytest.mark.skipif(not _TORCH_GREATER_EQUAL_1_6, reason="SWA available from PyTorch 1.6.0")
|
|
def test_swa_raises():
|
|
with pytest.raises(MisconfigurationException, match=">0 integer or a float between 0 and 1"):
|
|
StochasticWeightAveraging(swa_epoch_start=0, swa_lrs=0.1)
|
|
with pytest.raises(MisconfigurationException, match=">0 integer or a float between 0 and 1"):
|
|
StochasticWeightAveraging(swa_epoch_start=1.5, swa_lrs=0.1)
|
|
with pytest.raises(MisconfigurationException, match=">0 integer or a float between 0 and 1"):
|
|
StochasticWeightAveraging(swa_epoch_start=-1, swa_lrs=0.1)
|
|
with pytest.raises(MisconfigurationException, match="positive float or a list of positive float"):
|
|
StochasticWeightAveraging(swa_epoch_start=5, swa_lrs=[0.2, 1])
|
|
|
|
|
|
@pytest.mark.parametrize('stochastic_weight_avg', [False, True])
|
|
@pytest.mark.parametrize('use_callbacks', [False, True])
|
|
@pytest.mark.skipif(not _TORCH_GREATER_EQUAL_1_6, reason="SWA available from PyTorch 1.6.0")
|
|
def test_trainer_and_stochastic_weight_avg(tmpdir, use_callbacks, stochastic_weight_avg):
|
|
"""Test to ensure SWA Callback is injected when `stochastic_weight_avg` is provided to the Trainer"""
|
|
|
|
class TestModel(BoringModel):
|
|
|
|
def configure_optimizers(self):
|
|
optimizer = torch.optim.SGD(self.layer.parameters(), lr=0.1)
|
|
return optimizer
|
|
|
|
model = TestModel()
|
|
trainer = Trainer(
|
|
default_root_dir=tmpdir,
|
|
callbacks=StochasticWeightAveraging(swa_lrs=1e-3) if use_callbacks else None,
|
|
stochastic_weight_avg=stochastic_weight_avg,
|
|
limit_train_batches=4,
|
|
limit_val_batches=4,
|
|
max_epochs=2,
|
|
)
|
|
trainer.fit(model)
|
|
if use_callbacks or stochastic_weight_avg:
|
|
assert len([cb for cb in trainer.callbacks if isinstance(cb, StochasticWeightAveraging)]) == 1
|
|
assert trainer.callbacks[0]._swa_lrs == (1e-3 if use_callbacks else 0.1)
|
|
else:
|
|
assert all(not isinstance(cb, StochasticWeightAveraging) for cb in trainer.callbacks)
|