lightning/tests/callbacks/test_callbacks.py

217 lines
8.1 KiB
Python

# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from unittest import mock
from unittest.mock import ANY, call, MagicMock, Mock
from pytorch_lightning import Trainer
from tests.helpers import BoringModel
@mock.patch("torch.save") # need to mock torch.save or we get pickle error
def test_trainer_callback_system(torch_save, tmpdir):
"""Test the callback system."""
model = BoringModel()
callback_mock = MagicMock()
trainer_options = dict(
default_root_dir=tmpdir,
callbacks=[callback_mock],
max_epochs=1,
limit_val_batches=1,
limit_train_batches=3,
limit_test_batches=2,
progress_bar_refresh_rate=0,
)
# no call yet
callback_mock.assert_not_called()
# fit model
trainer = Trainer(**trainer_options)
# check that only the to calls exists
assert trainer.callbacks[0] == callback_mock
assert callback_mock.method_calls == [
call.on_init_start(trainer),
call.on_init_end(trainer),
]
trainer.fit(model)
assert callback_mock.method_calls == [
call.on_init_start(trainer),
call.on_init_end(trainer),
call.setup(trainer, model, 'fit'),
call.on_before_accelerator_backend_setup(trainer, model),
call.on_fit_start(trainer, model),
call.on_pretrain_routine_start(trainer, model),
call.on_pretrain_routine_end(trainer, model),
call.on_sanity_check_start(trainer, model),
call.on_validation_start(trainer, model),
call.on_validation_epoch_start(trainer, model),
call.on_validation_batch_start(trainer, model, ANY, 0, 0),
call.on_validation_batch_end(trainer, model, ANY, ANY, 0, 0),
call.on_validation_epoch_end(trainer, model),
call.on_epoch_end(trainer, model),
call.on_validation_end(trainer, model),
call.on_sanity_check_end(trainer, model),
call.on_train_start(trainer, model),
call.on_epoch_start(trainer, model),
call.on_train_epoch_start(trainer, model),
call.on_batch_start(trainer, model),
call.on_train_batch_start(trainer, model, ANY, 0, 0),
call.on_after_backward(trainer, model),
call.on_before_zero_grad(trainer, model, trainer.optimizers[0]),
call.on_train_batch_end(trainer, model, ANY, ANY, 0, 0),
call.on_batch_end(trainer, model),
call.on_batch_start(trainer, model),
call.on_train_batch_start(trainer, model, ANY, 1, 0),
call.on_after_backward(trainer, model),
call.on_before_zero_grad(trainer, model, trainer.optimizers[0]),
call.on_train_batch_end(trainer, model, ANY, ANY, 1, 0),
call.on_batch_end(trainer, model),
call.on_batch_start(trainer, model),
call.on_train_batch_start(trainer, model, ANY, 2, 0),
call.on_after_backward(trainer, model),
call.on_before_zero_grad(trainer, model, trainer.optimizers[0]),
call.on_train_batch_end(trainer, model, ANY, ANY, 2, 0),
call.on_batch_end(trainer, model),
call.on_train_epoch_end(trainer, model, ANY),
call.on_epoch_end(trainer, model),
call.on_validation_start(trainer, model),
call.on_validation_epoch_start(trainer, model),
call.on_validation_batch_start(trainer, model, ANY, 0, 0),
call.on_validation_batch_end(trainer, model, ANY, ANY, 0, 0),
call.on_validation_epoch_end(trainer, model),
call.on_epoch_end(trainer, model),
call.on_validation_end(trainer, model),
call.on_save_checkpoint(trainer, model),
call.on_train_end(trainer, model),
call.on_fit_end(trainer, model),
call.teardown(trainer, model, 'fit'),
]
callback_mock.reset_mock()
trainer = Trainer(**trainer_options)
trainer.test(model)
assert callback_mock.method_calls == [
call.on_init_start(trainer),
call.on_init_end(trainer),
call.setup(trainer, model, 'test'),
call.on_before_accelerator_backend_setup(trainer, model),
call.on_fit_start(trainer, model),
call.on_test_start(trainer, model),
call.on_test_epoch_start(trainer, model),
call.on_test_batch_start(trainer, model, ANY, 0, 0),
call.on_test_batch_end(trainer, model, ANY, ANY, 0, 0),
call.on_test_batch_start(trainer, model, ANY, 1, 0),
call.on_test_batch_end(trainer, model, ANY, ANY, 1, 0),
call.on_test_epoch_end(trainer, model),
call.on_epoch_end(trainer, model),
call.on_test_end(trainer, model),
call.on_fit_end(trainer, model),
call.teardown(trainer, model, 'fit'),
call.teardown(trainer, model, 'test'),
]
def test_callbacks_configured_in_model(tmpdir):
""" Test the callback system with callbacks added through the model hook. """
model_callback_mock = Mock()
trainer_callback_mock = Mock()
class TestModel(BoringModel):
def configure_callbacks(self):
return [model_callback_mock]
model = TestModel()
trainer_options = dict(
default_root_dir=tmpdir,
checkpoint_callback=False,
fast_dev_run=True,
progress_bar_refresh_rate=0,
)
def assert_expected_calls(_trainer, model_callback, trainer_callback):
# some methods in callbacks configured through model won't get called
uncalled_methods = [
call.on_init_start(_trainer),
call.on_init_end(_trainer),
]
for uncalled in uncalled_methods:
assert uncalled not in model_callback.method_calls
# assert that the rest of calls are the same as for trainer callbacks
expected_calls = [m for m in trainer_callback.method_calls if m not in uncalled_methods]
assert expected_calls
assert model_callback.method_calls == expected_calls
# .fit()
trainer_options.update(callbacks=[trainer_callback_mock])
trainer = Trainer(**trainer_options)
assert trainer_callback_mock in trainer.callbacks
assert model_callback_mock not in trainer.callbacks
trainer.fit(model)
assert model_callback_mock in trainer.callbacks
assert trainer.callbacks[-1] == model_callback_mock
assert_expected_calls(trainer, model_callback_mock, trainer_callback_mock)
# .test()
model_callback_mock.reset_mock()
trainer_callback_mock.reset_mock()
trainer_options.update(callbacks=[trainer_callback_mock])
trainer = Trainer(**trainer_options)
trainer.test(model)
assert model_callback_mock in trainer.callbacks
assert trainer.callbacks[-1] == model_callback_mock
assert_expected_calls(trainer, model_callback_mock, trainer_callback_mock)
def test_configure_callbacks_hook_multiple_calls(tmpdir):
""" Test that subsequent calls to `configure_callbacks` do not change the callbacks list. """
model_callback_mock = Mock()
class TestModel(BoringModel):
def configure_callbacks(self):
return [model_callback_mock]
model = TestModel()
trainer = Trainer(
default_root_dir=tmpdir,
fast_dev_run=True,
checkpoint_callback=False,
progress_bar_refresh_rate=1,
)
callbacks_before_fit = trainer.callbacks.copy()
assert callbacks_before_fit
trainer.fit(model)
callbacks_after_fit = trainer.callbacks.copy()
assert callbacks_after_fit == callbacks_before_fit + [model_callback_mock]
trainer.test(model)
callbacks_after_test = trainer.callbacks.copy()
assert callbacks_after_test == callbacks_after_fit
trainer.test(ckpt_path=None)
callbacks_after_test = trainer.callbacks.copy()
assert callbacks_after_test == callbacks_after_fit