367 lines
13 KiB
Python
367 lines
13 KiB
Python
# Copyright The PyTorch Lightning team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import json
|
|
import os
|
|
import platform
|
|
import shlex
|
|
import subprocess
|
|
import sys
|
|
|
|
import numpy as np
|
|
import pytest
|
|
import torch
|
|
from sklearn.metrics import accuracy_score
|
|
|
|
import tests.helpers.pipelines as tpipes
|
|
import tests.helpers.utils as tutils
|
|
from pytorch_lightning import Trainer
|
|
from pytorch_lightning.accelerators import CPUAccelerator
|
|
from pytorch_lightning.metrics.classification.accuracy import Accuracy
|
|
from pytorch_lightning.trainer.states import TrainerState
|
|
from pytorch_lightning.utilities import _APEX_AVAILABLE, _HOROVOD_AVAILABLE, _NATIVE_AMP_AVAILABLE
|
|
from tests.helpers import BoringModel
|
|
from tests.helpers.advanced_models import BasicGAN
|
|
|
|
if _HOROVOD_AVAILABLE:
|
|
import horovod
|
|
import horovod.torch as hvd
|
|
|
|
# This script will run the actual test model training in parallel
|
|
TEST_SCRIPT = os.path.join(os.path.dirname(__file__), 'data', 'horovod', 'train_default_model.py')
|
|
|
|
try:
|
|
from horovod.common.util import nccl_built
|
|
nccl_built()
|
|
except (ImportError, ModuleNotFoundError, AttributeError):
|
|
_HOROVOD_NCCL_AVAILABLE = False
|
|
finally:
|
|
_HOROVOD_NCCL_AVAILABLE = True
|
|
|
|
|
|
def _run_horovod(trainer_options, on_gpu=False):
|
|
"""Execute the training script across multiple workers in parallel."""
|
|
num_processes = trainer_options.get('gpus', 2)
|
|
# for Horovod, we interpret `gpus` to be set per worker
|
|
trainer_options.update(gpus=1 if on_gpu else None)
|
|
tutils.reset_seed()
|
|
cmdline = [
|
|
'horovodrun', '-np',
|
|
str(num_processes), sys.executable, TEST_SCRIPT, '--trainer-options',
|
|
shlex.quote(json.dumps(trainer_options))
|
|
]
|
|
if on_gpu:
|
|
cmdline += ['--on-gpu']
|
|
exit_code = subprocess.call(' '.join(cmdline), shell=True, env=os.environ.copy())
|
|
assert exit_code == 0
|
|
|
|
|
|
@pytest.mark.skipif(platform.system() == "Windows", reason="Horovod is not supported on Windows")
|
|
def test_horovod_cpu(tmpdir):
|
|
"""Test Horovod running multi-process on CPU."""
|
|
trainer_options = dict(
|
|
default_root_dir=str(tmpdir),
|
|
weights_save_path=str(tmpdir),
|
|
gradient_clip_val=1.0,
|
|
progress_bar_refresh_rate=0,
|
|
max_epochs=1,
|
|
limit_train_batches=0.4,
|
|
limit_val_batches=0.2,
|
|
accelerator='horovod',
|
|
deterministic=True,
|
|
)
|
|
_run_horovod(trainer_options)
|
|
|
|
|
|
@pytest.mark.skipif(platform.system() == "Windows", reason="Horovod is not supported on Windows")
|
|
def test_horovod_cpu_implicit(tmpdir):
|
|
"""Test Horovod without specifying a backend, inferring from env set by `horovodrun`."""
|
|
trainer_options = dict(
|
|
default_root_dir=str(tmpdir),
|
|
weights_save_path=str(tmpdir),
|
|
gradient_clip_val=1.0,
|
|
progress_bar_refresh_rate=0,
|
|
max_epochs=1,
|
|
limit_train_batches=0.4,
|
|
limit_val_batches=0.2,
|
|
deterministic=True,
|
|
)
|
|
_run_horovod(trainer_options)
|
|
|
|
|
|
@pytest.mark.skipif(platform.system() == "Windows", reason="Horovod is not supported on Windows")
|
|
@pytest.mark.skipif(not _HOROVOD_NCCL_AVAILABLE, reason="test requires Horovod with NCCL support")
|
|
@pytest.mark.skipif(torch.cuda.device_count() < 2, reason="test requires multi-GPU machine")
|
|
def test_horovod_multi_gpu(tmpdir):
|
|
"""Test Horovod with multi-GPU support."""
|
|
trainer_options = dict(
|
|
default_root_dir=str(tmpdir),
|
|
weights_save_path=str(tmpdir),
|
|
gradient_clip_val=1.0,
|
|
progress_bar_refresh_rate=0,
|
|
max_epochs=1,
|
|
limit_train_batches=0.4,
|
|
limit_val_batches=0.2,
|
|
gpus=2,
|
|
deterministic=True,
|
|
accelerator='horovod',
|
|
)
|
|
_run_horovod(trainer_options, on_gpu=True)
|
|
|
|
|
|
@pytest.mark.skip(reason="Horovod has a problem with broadcast when using apex?")
|
|
@pytest.mark.skipif(platform.system() == "Windows", reason="Horovod is not supported on Windows")
|
|
@pytest.mark.skipif(not _HOROVOD_NCCL_AVAILABLE, reason="test requires Horovod with NCCL support")
|
|
@pytest.mark.skipif(torch.cuda.device_count() < 2, reason="test requires multi-GPU machine")
|
|
@pytest.mark.skipif(not _APEX_AVAILABLE, reason="test requires apex")
|
|
def test_horovod_apex(tmpdir):
|
|
"""Test Horovod with multi-GPU support using apex amp."""
|
|
trainer_options = dict(
|
|
default_root_dir=str(tmpdir),
|
|
weights_save_path=str(tmpdir),
|
|
gradient_clip_val=1.0,
|
|
progress_bar_refresh_rate=0,
|
|
max_epochs=1,
|
|
limit_train_batches=0.4,
|
|
limit_val_batches=0.2,
|
|
gpus=2,
|
|
deterministic=True,
|
|
accelerator='horovod',
|
|
amp_backend='apex',
|
|
precision=16,
|
|
)
|
|
_run_horovod(trainer_options, on_gpu=True)
|
|
|
|
|
|
@pytest.mark.skip(reason="Skip till Horovod fixes integration with Native torch.cuda.amp")
|
|
@pytest.mark.skipif(platform.system() == "Windows", reason="Horovod is not supported on Windows")
|
|
@pytest.mark.skipif(not _HOROVOD_NCCL_AVAILABLE, reason="test requires Horovod with NCCL support")
|
|
@pytest.mark.skipif(torch.cuda.device_count() < 2, reason="test requires multi-GPU machine")
|
|
@pytest.mark.skipif(not _NATIVE_AMP_AVAILABLE, reason="test requires torch.cuda.amp")
|
|
def test_horovod_amp(tmpdir):
|
|
"""Test Horovod with multi-GPU support using native amp."""
|
|
trainer_options = dict(
|
|
default_root_dir=str(tmpdir),
|
|
weights_save_path=str(tmpdir),
|
|
gradient_clip_val=1.0,
|
|
progress_bar_refresh_rate=0,
|
|
max_epochs=1,
|
|
limit_train_batches=0.4,
|
|
limit_val_batches=0.2,
|
|
gpus=2,
|
|
deterministic=True,
|
|
accelerator='horovod',
|
|
amp_backend='native',
|
|
precision=16,
|
|
)
|
|
_run_horovod(trainer_options, on_gpu=True)
|
|
|
|
|
|
@pytest.mark.skipif(platform.system() == "Windows", reason="Horovod is not supported on Windows")
|
|
@pytest.mark.skipif(not _HOROVOD_NCCL_AVAILABLE, reason="test requires Horovod with NCCL support")
|
|
@pytest.mark.skipif(not torch.cuda.is_available(), reason="test requires GPU machine")
|
|
def test_horovod_transfer_batch_to_gpu(tmpdir):
|
|
|
|
class TestTrainingStepModel(BoringModel):
|
|
|
|
def training_step(self, batch, *args, **kwargs):
|
|
assert str(batch.device) != 'cpu'
|
|
return super(TestTrainingStepModel, self).training_step(batch, *args, **kwargs)
|
|
|
|
def validation_step(self, batch, *args, **kwargs):
|
|
assert str(batch.device) != 'cpu'
|
|
return super(TestTrainingStepModel, self).validation_step(batch, *args, **kwargs)
|
|
|
|
model = TestTrainingStepModel()
|
|
|
|
trainer_options = dict(
|
|
default_root_dir=str(tmpdir),
|
|
progress_bar_refresh_rate=0,
|
|
max_epochs=1,
|
|
limit_train_batches=0.4,
|
|
limit_val_batches=0.2,
|
|
gpus=1,
|
|
deterministic=True,
|
|
accelerator='horovod',
|
|
)
|
|
tpipes.run_model_test_without_loggers(trainer_options, model)
|
|
|
|
|
|
@pytest.mark.skipif(platform.system() == "Windows", reason="Horovod is not supported on Windows")
|
|
def test_horovod_multi_optimizer(tmpdir):
|
|
model = BasicGAN()
|
|
|
|
# fit model
|
|
trainer = Trainer(
|
|
default_root_dir=str(tmpdir),
|
|
progress_bar_refresh_rate=0,
|
|
max_epochs=1,
|
|
limit_train_batches=0.4,
|
|
limit_val_batches=0.2,
|
|
deterministic=True,
|
|
accelerator='horovod',
|
|
)
|
|
trainer.fit(model)
|
|
assert trainer.state == TrainerState.FINISHED, f"Training failed with {trainer.state}"
|
|
|
|
assert len(trainer.optimizers) == 2
|
|
for i, optimizer in enumerate(trainer.optimizers):
|
|
assert hasattr(optimizer, 'synchronize'), 'optimizer has not been wrapped into DistributedOptimizer'
|
|
|
|
def get_model_params(model):
|
|
return set([p for p in model.parameters()])
|
|
|
|
def get_optimizer_params(optimizer):
|
|
return set([p for group in optimizer.param_groups for p in group.get('params', [])])
|
|
|
|
assert get_model_params(model.generator) != get_model_params(model.discriminator)
|
|
assert get_model_params(model.generator) == get_optimizer_params(trainer.optimizers[0])
|
|
assert get_model_params(model.discriminator) == get_optimizer_params(trainer.optimizers[1])
|
|
|
|
|
|
# TODO: unclear Horovod failure...
|
|
@pytest.mark.skip(reason="unclear Horovod failure...")
|
|
@pytest.mark.skipif(not _HOROVOD_AVAILABLE, reason="Horovod is unavailable")
|
|
@pytest.mark.skipif(platform.system() == "Windows", reason="Horovod is not supported on Windows")
|
|
def test_result_reduce_horovod(tmpdir):
|
|
"""Make sure result logging works with Horovod.
|
|
|
|
This test mirrors tests/core/test_results.py::_ddp_test_fn
|
|
"""
|
|
tutils.reset_seed()
|
|
tutils.set_random_master_port()
|
|
|
|
def hvd_test_fn():
|
|
path_here = os.path.abspath(os.path.dirname(__file__))
|
|
path_root = os.path.abspath(os.path.join(path_here, '..', '..'))
|
|
sys.path.insert(0, os.path.abspath(path_root))
|
|
|
|
class TestModel(BoringModel):
|
|
|
|
def training_step(self, batch, batch_idx):
|
|
self.training_step_called = True
|
|
|
|
tensor = torch.tensor([1.0])
|
|
self.log("test_tensor", tensor, sync_dist=True, sync_dist_op='sum', on_step=True, on_epoch=True)
|
|
|
|
res = self._results
|
|
|
|
# Check that `tensor` is summed across all ranks automatically
|
|
assert res["test_tensor"].item() == hvd.size(), \
|
|
"Result-Log does not work properly with Horovod and Tensors"
|
|
|
|
def training_epoch_end(self, outputs) -> None:
|
|
assert len(outputs) == 0
|
|
|
|
model = TestModel()
|
|
model.val_dataloader = None
|
|
|
|
trainer = Trainer(
|
|
default_root_dir=tmpdir,
|
|
limit_train_batches=2,
|
|
limit_val_batches=2,
|
|
max_epochs=1,
|
|
log_every_n_steps=1,
|
|
weights_summary=None,
|
|
)
|
|
|
|
trainer.fit(model)
|
|
|
|
horovod.run(hvd_test_fn, np=2)
|
|
|
|
|
|
# TODO: unclear Horovod failure...
|
|
@pytest.mark.skip(reason="unclear Horovod failure...")
|
|
@pytest.mark.skipif(not _HOROVOD_AVAILABLE, reason="Horovod is unavailable")
|
|
@pytest.mark.skipif(platform.system() == "Windows", reason="Horovod is not supported on Windows")
|
|
def test_accuracy_metric_horovod():
|
|
num_batches = 10
|
|
batch_size = 16
|
|
threshold = 0.5
|
|
|
|
def sk_metric(preds, target):
|
|
sk_preds = (preds.view(-1).numpy() >= threshold).astype(np.uint8)
|
|
sk_target = target.view(-1).numpy()
|
|
return accuracy_score(y_true=sk_target, y_pred=sk_preds)
|
|
|
|
preds = torch.rand(num_batches, batch_size)
|
|
target = torch.randint(high=2, size=(num_batches, batch_size))
|
|
|
|
def _compute_batch():
|
|
trainer = Trainer(
|
|
fast_dev_run=True,
|
|
accelerator='horovod',
|
|
)
|
|
|
|
assert isinstance(trainer.accelerator_backend, CPUAccelerator)
|
|
# TODO: test that we selected the correct training_type_plugin based on horovod flags
|
|
|
|
metric = Accuracy(
|
|
compute_on_step=True,
|
|
dist_sync_on_step=True,
|
|
dist_sync_fn=trainer.training_type_plugin.gather_all_tensors,
|
|
threshold=threshold
|
|
)
|
|
|
|
for i in range(hvd.rank(), num_batches, hvd.size()):
|
|
batch_result = metric(preds[i], target[i])
|
|
if hvd.rank() == 0:
|
|
dist_preds = torch.stack([preds[i + r] for r in range(hvd.size())])
|
|
dist_target = torch.stack([target[i + r] for r in range(hvd.size())])
|
|
sk_batch_result = sk_metric(dist_preds, dist_target)
|
|
assert np.allclose(batch_result.numpy(), sk_batch_result)
|
|
|
|
# check on all batches on all ranks
|
|
result = metric.compute()
|
|
assert isinstance(result, torch.Tensor)
|
|
|
|
total_preds = torch.stack([preds[i] for i in range(num_batches)])
|
|
total_target = torch.stack([target[i] for i in range(num_batches)])
|
|
sk_result = sk_metric(total_preds, total_target)
|
|
|
|
assert np.allclose(result.numpy(), sk_result)
|
|
|
|
horovod.run(_compute_batch, np=2)
|
|
|
|
|
|
# @pytest.mark.skipif(platform.system() == "Windows", reason="Horovod is not supported on Windows")
|
|
# def test_horovod_multi_optimizer_with_scheduling_stepping(tmpdir):
|
|
# model = BoringModel()
|
|
# model.configure_optimizers = model.configure_optimizers__multiple_schedulers
|
|
#
|
|
# num_workers = 8
|
|
# init_lr = hparams.get('learning_rate') * num_workers
|
|
#
|
|
# with patch('pytorch_lightning.accelerators.legacy.horovod_backend.hvd.size') as mock_hvd_size:
|
|
# mock_hvd_size.return_value = 8
|
|
#
|
|
# # fit model
|
|
# trainer = Trainer(
|
|
# default_root_dir=tmpdir,
|
|
# max_epochs=1,
|
|
# limit_val_batches=0.5,
|
|
# limit_train_batches=0.2,
|
|
# distributed_backend='horovod'
|
|
# )
|
|
# results = trainer.fit(model)
|
|
# assert results == 1
|
|
#
|
|
# adjusted_lr1 = [pg['lr'] for pg in trainer.optimizers[0].param_groups][0]
|
|
# adjusted_lr2 = [pg['lr'] for pg in trainer.optimizers[1].param_groups][0]
|
|
#
|
|
# # Called ones after end of epoch with gamma=0.1
|
|
# assert pytest.approx(init_lr * 0.1) == adjusted_lr1
|
|
#
|
|
# # Called every 3 steps, meaning for 1 epoch of 11 batches, it is called 3 times with gamma=0.1
|
|
# assert pytest.approx(init_lr * 0.1) == adjusted_lr2
|