lightning/tests/models/test_hooks.py

473 lines
16 KiB
Python

# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import inspect
import os
from unittest import mock
from unittest.mock import PropertyMock
import pytest
import torch
from pytorch_lightning import Callback, Trainer
from pytorch_lightning.trainer.states import TrainerState
from tests.helpers import BoringModel, RandomDataset
@pytest.mark.parametrize('max_steps', [1, 2, 3])
def test_on_before_zero_grad_called(tmpdir, max_steps):
class CurrentTestModel(BoringModel):
on_before_zero_grad_called = 0
def on_before_zero_grad(self, optimizer):
self.on_before_zero_grad_called += 1
model = CurrentTestModel()
trainer = Trainer(
default_root_dir=tmpdir,
max_steps=max_steps,
max_epochs=2,
)
assert 0 == model.on_before_zero_grad_called
trainer.fit(model)
assert max_steps == model.on_before_zero_grad_called
model.on_before_zero_grad_called = 0
trainer.test(model)
assert 0 == model.on_before_zero_grad_called
def test_training_epoch_end_metrics_collection(tmpdir):
""" Test that progress bar metrics also get collected at the end of an epoch. """
num_epochs = 3
class CurrentModel(BoringModel):
def training_step(self, *args, **kwargs):
output = super().training_step(*args, **kwargs)
self.log_dict({'step_metric': torch.tensor(-1), 'shared_metric': 100}, logger=False, prog_bar=True)
return output
def training_epoch_end(self, outputs):
epoch = self.current_epoch
# both scalar tensors and Python numbers are accepted
self.log_dict(
{
f'epoch_metric_{epoch}': torch.tensor(epoch),
'shared_metric': 111
},
logger=False,
prog_bar=True,
)
model = CurrentModel()
trainer = Trainer(
max_epochs=num_epochs,
default_root_dir=tmpdir,
overfit_batches=2,
)
trainer.fit(model)
assert trainer.state == TrainerState.FINISHED, f"Training failed with {trainer.state}"
metrics = trainer.progress_bar_dict
# metrics added in training step should be unchanged by epoch end method
assert metrics['step_metric'] == -1
# a metric shared in both methods gets overwritten by epoch_end
assert metrics['shared_metric'] == 111
# metrics are kept after each epoch
for i in range(num_epochs):
assert metrics[f'epoch_metric_{i}'] == i
def test_training_epoch_end_metrics_collection_on_override(tmpdir):
""" Test that batch end metrics are collected when training_epoch_end is overridden at the end of an epoch. """
class LoggingCallback(Callback):
def on_train_epoch_start(self, trainer, pl_module):
self.len_outputs = 0
def on_train_epoch_end(self, trainer, pl_module, outputs):
self.len_outputs = len(outputs[0])
class OverriddenModel(BoringModel):
def on_train_epoch_start(self):
self.num_train_batches = 0
def training_epoch_end(self, outputs): # Overridden
return
def on_train_batch_end(self, outputs, batch, batch_idx, dataloader_idx):
self.num_train_batches += 1
class NotOverriddenModel(BoringModel):
def on_train_epoch_start(self):
self.num_train_batches = 0
def on_train_batch_end(self, outputs, batch, batch_idx, dataloader_idx):
self.num_train_batches += 1
overridden_model = OverriddenModel()
not_overridden_model = NotOverriddenModel()
not_overridden_model.training_epoch_end = None
callback = LoggingCallback()
trainer = Trainer(
max_epochs=1,
default_root_dir=tmpdir,
overfit_batches=2,
callbacks=[callback],
)
trainer.fit(overridden_model)
# outputs from on_train_batch_end should be accessible in on_train_epoch_end hook
# if training_epoch_end is overridden
assert callback.len_outputs == overridden_model.num_train_batches
trainer.fit(not_overridden_model)
# outputs from on_train_batch_end should be empty
assert callback.len_outputs == 0
@pytest.mark.skipif(not torch.cuda.is_available(), reason="test requires GPU machine")
@mock.patch("pytorch_lightning.accelerators.accelerator.Accelerator.lightning_module", new_callable=PropertyMock)
def test_transfer_batch_hook(model_getter_mock):
class CustomBatch:
def __init__(self, data):
self.samples = data[0]
self.targets = data[1]
class CurrentTestModel(BoringModel):
hook_called = False
def transfer_batch_to_device(self, data, device):
self.hook_called = True
if isinstance(data, CustomBatch):
data.samples = data.samples.to(device)
data.targets = data.targets.to(device)
else:
data = super().transfer_batch_to_device(data, device)
return data
model = CurrentTestModel()
batch = CustomBatch((torch.zeros(5, 32), torch.ones(5, 1, dtype=torch.long)))
trainer = Trainer(gpus=1)
# running .fit() would require us to implement custom data loaders, we mock the model reference instead
model_getter_mock.return_value = model
batch_gpu = trainer.accelerator_backend.batch_to_device(batch, torch.device('cuda:0'))
expected = torch.device('cuda', 0)
assert model.hook_called
assert batch_gpu.samples.device == batch_gpu.targets.device == expected
@pytest.mark.skipif(torch.cuda.device_count() < 2, reason="test requires multi-GPU machine")
@pytest.mark.skipif(
not os.getenv("PL_RUNNING_SPECIAL_TESTS", '0') == '1', reason="test should be run outside of pytest"
)
def test_transfer_batch_hook_ddp(tmpdir):
"""
Test custom data are properly moved to the right device using ddp
"""
class CustomBatch:
def __init__(self, data):
self.samples = data[0]
def to(self, device, **kwargs):
self.samples = self.samples.to(device, **kwargs)
return self
def collate_fn(batch):
return CustomBatch(batch)
class TestModel(BoringModel):
def training_step(self, batch, batch_idx):
assert batch.samples.device == self.device
assert isinstance(batch_idx, int)
def train_dataloader(self):
return torch.utils.data.DataLoader(RandomDataset(32, 64), collate_fn=collate_fn)
model = TestModel()
model.validation_step = None
model.training_epoch_end = None
trainer = Trainer(
default_root_dir=tmpdir,
limit_train_batches=2,
limit_val_batches=0,
max_epochs=1,
weights_summary=None,
accelerator="ddp",
gpus=2,
)
trainer.fit(model)
@pytest.mark.parametrize('max_epochs,batch_idx_', [(2, 5), (3, 8), (4, 12)])
def test_on_train_batch_start_hook(max_epochs, batch_idx_):
class CurrentModel(BoringModel):
def on_train_batch_start(self, batch, batch_idx, dataloader_idx):
if batch_idx == batch_idx_:
return -1
model = CurrentModel()
trainer = Trainer(max_epochs=max_epochs)
trainer.fit(model)
if batch_idx_ > len(model.val_dataloader()) - 1:
assert trainer.batch_idx == len(model.val_dataloader()) - 1
assert trainer.global_step == len(model.val_dataloader()) * max_epochs
else:
assert trainer.batch_idx == batch_idx_
assert trainer.global_step == (batch_idx_ + 1) * max_epochs
def test_trainer_model_hook_system(tmpdir):
"""Test the hooks system."""
class HookedModel(BoringModel):
def __init__(self):
super().__init__()
self.called = []
def on_after_backward(self):
self.called.append(inspect.currentframe().f_code.co_name)
super().on_after_backward()
def on_before_zero_grad(self, optimizer):
self.called.append(inspect.currentframe().f_code.co_name)
super().on_before_zero_grad(optimizer)
def on_epoch_start(self):
self.called.append(inspect.currentframe().f_code.co_name)
super().on_epoch_start()
def on_epoch_end(self):
self.called.append(inspect.currentframe().f_code.co_name)
super().on_epoch_end()
def on_fit_start(self):
self.called.append(inspect.currentframe().f_code.co_name)
super().on_fit_start()
def on_fit_end(self):
self.called.append(inspect.currentframe().f_code.co_name)
super().on_fit_end()
def on_hpc_load(self, checkpoint):
self.called.append(inspect.currentframe().f_code.co_name)
super().on_hpc_load(checkpoint)
def on_hpc_save(self, checkpoint):
self.called.append(inspect.currentframe().f_code.co_name)
super().on_hpc_save(checkpoint)
def on_load_checkpoint(self, checkpoint):
self.called.append(inspect.currentframe().f_code.co_name)
super().on_load_checkpoint(checkpoint)
def on_save_checkpoint(self, checkpoint):
self.called.append(inspect.currentframe().f_code.co_name)
super().on_save_checkpoint(checkpoint)
def on_pretrain_routine_start(self):
self.called.append(inspect.currentframe().f_code.co_name)
super().on_pretrain_routine_start()
def on_pretrain_routine_end(self):
self.called.append(inspect.currentframe().f_code.co_name)
super().on_pretrain_routine_end()
def on_train_start(self):
self.called.append(inspect.currentframe().f_code.co_name)
super().on_train_start()
def on_train_end(self):
self.called.append(inspect.currentframe().f_code.co_name)
super().on_train_end()
def on_train_batch_start(self, batch, batch_idx, dataloader_idx):
self.called.append(inspect.currentframe().f_code.co_name)
super().on_train_batch_start(batch, batch_idx, dataloader_idx)
def on_train_batch_end(self, outputs, batch, batch_idx, dataloader_idx):
self.called.append(inspect.currentframe().f_code.co_name)
super().on_train_batch_end(outputs, batch, batch_idx, dataloader_idx)
def on_train_epoch_start(self):
self.called.append(inspect.currentframe().f_code.co_name)
super().on_train_epoch_start()
def on_train_epoch_end(self, outputs):
self.called.append(inspect.currentframe().f_code.co_name)
super().on_train_epoch_end(outputs)
def on_validation_start(self):
self.called.append(inspect.currentframe().f_code.co_name)
super().on_validation_start()
def on_validation_end(self):
self.called.append(inspect.currentframe().f_code.co_name)
super().on_validation_end()
def on_validation_batch_start(self, batch, batch_idx, dataloader_idx):
self.called.append(inspect.currentframe().f_code.co_name)
super().on_validation_batch_start(batch, batch_idx, dataloader_idx)
def on_validation_batch_end(self, outputs, batch, batch_idx, dataloader_idx):
self.called.append(inspect.currentframe().f_code.co_name)
super().on_validation_batch_end(outputs, batch, batch_idx, dataloader_idx)
def on_validation_epoch_start(self):
self.called.append(inspect.currentframe().f_code.co_name)
super().on_validation_epoch_start()
def on_validation_epoch_end(self):
self.called.append(inspect.currentframe().f_code.co_name)
super().on_validation_epoch_end()
def on_test_start(self):
self.called.append(inspect.currentframe().f_code.co_name)
super().on_test_start()
def on_test_batch_start(self, batch, batch_idx, dataloader_idx):
self.called.append(inspect.currentframe().f_code.co_name)
super().on_test_batch_start(batch, batch_idx, dataloader_idx)
def on_test_batch_end(self, outputs, batch, batch_idx, dataloader_idx):
self.called.append(inspect.currentframe().f_code.co_name)
super().on_test_batch_end(outputs, batch, batch_idx, dataloader_idx)
def on_test_epoch_start(self):
self.called.append(inspect.currentframe().f_code.co_name)
super().on_test_epoch_start()
def on_test_epoch_end(self):
self.called.append(inspect.currentframe().f_code.co_name)
super().on_test_epoch_end()
def on_validation_model_eval(self):
self.called.append(inspect.currentframe().f_code.co_name)
super().on_validation_model_eval()
def on_validation_model_train(self):
self.called.append(inspect.currentframe().f_code.co_name)
super().on_validation_model_train()
def on_test_model_eval(self):
self.called.append(inspect.currentframe().f_code.co_name)
super().on_test_model_eval()
def on_test_model_train(self):
self.called.append(inspect.currentframe().f_code.co_name)
super().on_test_model_train()
def on_test_end(self):
self.called.append(inspect.currentframe().f_code.co_name)
super().on_test_end()
def teardown(self, stage: str):
self.called.append(inspect.currentframe().f_code.co_name)
super().teardown(stage)
model = HookedModel()
assert model.called == []
# fit model
trainer = Trainer(
default_root_dir=tmpdir,
max_epochs=1,
limit_val_batches=1,
limit_train_batches=2,
limit_test_batches=1,
progress_bar_refresh_rate=0,
)
assert model.called == []
trainer.fit(model)
expected = [
'on_fit_start',
'on_pretrain_routine_start',
'on_pretrain_routine_end',
'on_validation_model_eval',
'on_validation_start',
'on_validation_epoch_start',
'on_validation_batch_start',
'on_validation_batch_end',
'on_validation_epoch_end',
'on_validation_end',
'on_validation_model_train',
'on_train_start',
'on_epoch_start',
'on_train_epoch_start',
'on_train_batch_start',
'on_after_backward',
'on_before_zero_grad',
'on_train_batch_end',
'on_train_batch_start',
'on_after_backward',
'on_before_zero_grad',
'on_train_batch_end',
'on_train_epoch_end',
'on_epoch_end',
'on_validation_model_eval',
'on_validation_start',
'on_validation_epoch_start',
'on_validation_batch_start',
'on_validation_batch_end',
'on_validation_epoch_end',
'on_save_checkpoint',
'on_validation_end',
'on_validation_model_train',
'on_train_end',
'on_fit_end',
'teardown',
]
assert model.called == expected
model2 = HookedModel()
trainer.test(model2)
expected = [
'on_fit_start',
'on_test_model_eval',
'on_test_start',
'on_test_epoch_start',
'on_test_batch_start',
'on_test_batch_end',
'on_test_epoch_end',
'on_test_end',
'on_test_model_train',
'on_fit_end',
'teardown', # for 'fit'
'teardown', # for 'test'
]
assert model2.called == expected